login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212717
Numerator of Sum_{k=1..n} 1/sigma(k).
6
1, 4, 19, 145, 53, 83, 353, 607, 8171, 75359, 78089, 79259, 11657, 2963, 12047, 378137, 386197, 389917, 397171, 2804377, 11344453, 11457293, 11626553, 11694257, 11825297, 11922017, 12023573, 12096113, 12231521, 12287941, 6207443, 6239683, 3140999, 9479417
OFFSET
1,2
LINKS
V. Sita Ramaiah and D. Suryanarayana, Sums of reciprocals of some multiplicative functions, Mathematical Journal of Okayama University, Vol. 21, No. 2 (1979), pp. 155-164.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1.
FORMULA
a(n)/A212718(n) = c * (log(n) + gamma + Sum_{p prime} (p-1)^2*beta(p)*log(p)/(p*alpha(p))) + O(log(n)^(2/3)*log(log(n))^(4/3)/n), where alpha(p) = 1 - ((p-1)^2/p) * Sum_{k>=1} 1/((p^k-1)*(p^(k+1)-1)), beta(p) = Sum_{k>=1} k/((p^k-1)*(p^(k+1)-1)), and c = Product_{p prime} alpha(p) = A308039 (Sita Ramaiah and Suryanarayana, 1979). - Amiram Eldar, Oct 16 2022
EXAMPLE
1, 4/3, 19/12, 145/84, 53/28, 83/42, 353/168, ...
MAPLE
with(numtheory): a:=n->numer(sum(1/sigma(k), k=1..n)): seq(a(n), n=1..50);
MATHEMATICA
Numerator[Table[Sum[1/DivisorSigma[1, k], {k, 1, n}], {n, 1, 50}]]
Accumulate[1/DivisorSigma[1, Range[40]]]//Numerator (* Harvey P. Dale, Aug 13 2023 *)
CROSSREFS
Cf. A000203, A212718 (denominators), A308039, A345327.
Sequence in context: A305725 A208992 A321388 * A067577 A225904 A203010
KEYWORD
nonn,frac
AUTHOR
Michel Lagneau, May 25 2012
STATUS
approved