login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203010
(n-1)-st elementary symmetric function of first n Lucas numbers, starting with L(1)=1.
2
1, 4, 19, 145, 1679, 31146, 919866, 43716030, 3345087696, 413168662224, 82432477483344, 26585428576089600, 13864587294260493504, 11694921751248976025856, 15957837208927564640940096, 35227081534568618432596098240
OFFSET
1,2
COMMENTS
From R. J. Mathar, Oct 01 2016 (Start):
The k-th elementary symmetric functions of the A000204(j), j=1..n, form a triangle T(n,k), 0<=k<=n, n>=0:
1
1 1
1 4 3
1 8 19 12
1 15 75 145 84
1 26 240 970 1679 924
1 44 708 5290 19139 31146 16632
1 73 1984 25822 172549 586177 919866 482328
1 120 5415 119070 1386183 8695980 28470185 43716030 22669416
This here is the first subdiagonal. The diagonal is A070825. The 2nd column is A027961. (End)
MATHEMATICA
f[k_] := LucasL[k]; t[n_] := Table[f[k], {k, 1, n}]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 16}] (* A203010 *)
CROSSREFS
Cf. A203009.
Sequence in context: A212717 A067577 A225904 * A362380 A249785 A341379
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 29 2011
STATUS
approved