login
A321118
T(n,k) = A321119(n) - (-1)^k*A321119(n-2*k)/2 for 0 < k < n, with T(0,0) = 0 and T(n,0) = T(n,n) = A002530(n+1) for n > 0, triangle read by rows; unreduced numerator of the weights of Holladay-Sard's quadrature formula.
4
0, 1, 1, 3, 10, 3, 4, 11, 11, 4, 11, 32, 26, 32, 11, 15, 43, 37, 37, 43, 15, 41, 118, 100, 106, 100, 118, 41, 56, 161, 137, 143, 143, 137, 161, 56, 153, 440, 374, 392, 386, 392, 374, 440, 153, 209, 601, 511, 535, 529, 529, 535, 511, 601, 209
OFFSET
0,4
COMMENTS
The n-th row common denominator is factorized out and is given by A321119(n).
Given a continuous function f over the interval [0,n], the best quadrature formula in the sense of Holladay-Sard is given by Integral_{x=0..n} f(x) dx = Sum_{k=0..n} T(n,k)*f(k)/A321119(n). The formula is exact if f belongs to the class of natural cubic splines.
REFERENCES
Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
LINKS
Franck Maminirina Ramaharo, Rows n = 0..150 of triangle, flattened
Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, Chapter II The Cubic Spline, Mathematics in Science and Engineering Volume 38 (1967), p. 9-74.
John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
FORMULA
T(n,k)/A321119(n) = (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*sqrt(6)*(alpha^n + (-alpha)^(-n))) if k = 0 or k = n, and 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n))) if 0 < k < n, where alpha = (sqrt(2) + sqrt(6))/2.
T(n,k) = T(n,n-k).
T(n,k) = 4*T(n-2,k) - T(n-4,k), n >= k + 4.
T(2*n+2,k)*A001834(n+1) = A001834(n)*T(2*n,k) + 2*A003500(n)*T(2*n+1,k) for k < 2*n.
T(2*n+3,k)*A003500(n+1) = A003500(n)*T(2*n+1,k) + 2*A001834(n+1)*T(2*n+2,k) for k < 2*n + 1.
Sum_{k=0..n} T(n,k)/A321119(n) = n.
EXAMPLE
Triangle begins (denominator is factored out):
0; 1/4
1, 1; 1/2
3, 10, 3; 1/8
4, 11, 11, 4; 1/10
11, 32, 26, 32, 11; 1/28
15, 43, 37, 37, 43, 15; 1/38
41, 118, 100, 106, 100, 118, 41; 1/104
56, 161, 137, 143, 143, 137, 161, 56; 1/142
153, 440, 374, 392, 386, 392, 374, 440, 153; 1/388
209, 601, 511, 535, 529, 529, 535, 511, 601, 209; 1/530
...
If f is a continuous function over the interval [0,3], then the quadrature formula yields Integral_{x=0..3} f(x) d(x) = (1/10)*(4*f(0) + 11*f(1) + 11*f(2) + 4*f(3)).
MATHEMATICA
alpha = (Sqrt[2] + Sqrt[6])/2; T[0, 0] = 0;
T[n_, k_] := If[n > 0 && k == 0 || k == n, (alpha^(n + 1) - (-alpha)^(-(n + 1)))/(2*Sqrt[6]*(alpha^n + (-alpha)^(-n))), 1 - (-1)^k*(alpha^(n - 2*k) + (-alpha)^(2*k - n))/(2*(alpha^n + (-alpha)^(-n)))];
a321119[n_] := 2^(-Floor[(n - 1)/2])*((1 - Sqrt[3])^n + (1 + Sqrt[3])^n);
Table[FullSimplify[a321119[n]*T[n, k]], {n, 0, 10}, {k, 0, n}] // Flatten
PROG
(Maxima)
(b[0] : 0, b[1] : 1, b[2] : 1, b[3] : 3, b[n] := 4*b[n-2] - b[n-4])$ /* A002530 */
d(n) := 2^(-floor((n - 1)/2))*((1 - sqrt(3))^n + (1 + sqrt(3))^n) $ /* A321119 */
T(n, k) := if n = 0 and k = 0 then 0 else if n > 0 and k = 0 or k = n then b[n + 1] else d(n) - (-1)^k*d(n - 2*k)/2$
create_list(ratsimp(T(n, k)), n, 0, 10, k, 0, n);
KEYWORD
nonn,easy,tabl,frac
AUTHOR
STATUS
approved