OFFSET
0,1
REFERENCES
Harold J. Ahlberg, Edwin N. Nilson and Joseph L. Walsh, The Theory of Splines and Their Applications, Academic Press, 1967. See p. 47, Table 2.5.2.
LINKS
Encyclopedia of Mathematics, Quadrature formula
John C. Holladay, A smoothest curve approximation, Math. Comp. Vol. 11 (1957), 233-243.
Peter Köhler, On the weights of Sard's quadrature formulas, CALCOLO Vol. 25 (1988), 169-186.
Leroy F. Meyers and Arthur Sard, Best approximate integration formulas, J. Math. Phys. Vol. 29 (1950), 118-123.
Arthur Sard, Best approximate integration formulas; best approximation formulas, American Journal of Mathematics Vol. 71 (1949), 80-91.
Isaac J. Schoenberg, Spline interpolation and best quadrature formulae, Bull. Amer. Math. Soc. Vol. 70 (1964), 143-148.
Frans Schurer, On natural cubic splines, with an application to numerical integration formulae, EUT report. WSK, Dept. of Mathematics and Computing Science Vol. 70-WSK-04 (1970), 1-32.
Index entries for linear recurrences with constant coefficients, signature (0,4,0,-1).
FORMULA
a(n) = (((sqrt(2) - sqrt(6))/2)^n + ((sqrt(6) + sqrt(2))/2)^n)*((2 - sqrt(2))*(-1)^n + 2 + sqrt(2))/2.
a(-n) = (-1)^n*a(n).
a(2*n) = 2*A001834(n).
a(2*n+1) = 2*A003500(n).
a(n) = 4*a(n-2) - a(n-4) with a(0) = 4, a(1) = 2, a(2) = 8, a(3) = 10.
a(2*n+3) = a(2*n+1) + a(2*n+2).
a(2*n+2) = a(2*n) + 2*a(2*n+1).
G.f.: 2*(1 - x)*(2 + 3*x - x^2)/(1 - 4*x^2 + x^4).
E.g.f.: (1 + exp(-sqrt(6)*x))*((2 - sqrt(2))*exp(sqrt(2 - sqrt(3))*x) + (2 + sqrt(2))*exp(sqrt(2 + sqrt(3))*x))/2.
Lim_{n->infinity} a(2*n+1)/a(2*n) = (1 + sqrt(3))/2.
EXAMPLE
a(0) = ((1 - sqrt(3))^0 + (1 + sqrt(3))^0)/2^floor((0 - 1)/2) = 2*(1 + 1) = 4.
MATHEMATICA
LinearRecurrence[{0, 4, 0, -1}, {4, 2, 8, 10}, 50]
PROG
(Maxima) a(n) := ((1 - sqrt(3))^n + (1 + sqrt(3))^n)/2^floor((n - 1)/2)$
makelist(ratsimp(a(n)), n, 0, 50);
CROSSREFS
KEYWORD
nonn,easy,frac
AUTHOR
Franck Maminirina Ramaharo, Nov 01 2018
STATUS
approved