The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292964 Rectangular array by antidiagonals: T(n,m) = rank of n*(1/e + m) when all the numbers k*(1/e+h), for k>=1, h>=0, are jointly ranked. 2
 1, 4, 2, 8, 10, 3, 13, 19, 16, 5, 17, 29, 32, 23, 6, 22, 40, 48, 44, 30, 7, 27, 52, 65, 68, 58, 37, 9, 34, 63, 82, 93, 89, 72, 46, 11, 38, 76, 102, 118, 120, 108, 87, 53, 12, 43, 88, 123, 144, 153, 149, 132, 101, 60, 14, 50, 99, 141, 171, 187, 189, 178, 155 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers. LINKS Clark Kimberling, Antidiagonals n=1..60, flattened FORMULA T(n,m) = Sum_{k=1...[n + m*n*e]} [1 - 1/e + n*(1/e + m)/k], where [ ]=floor. EXAMPLE Northwest corner: 1 4 8 13 17 22 2 10 19 29 40 52 3 16 32 48 65 82 5 23 44 68 93 118 6 30 58 89 120 153 7 37 72 108 149 189 9 46 87 132 178 228 The numbers k*(1/e+h), approximately: (for k=1): 0.367 1.367 2.3667 ... (for k=2): 0.735 2.735 4.735 ... (for k=3): 1.103 4.103 7.103 ... Replacing each by its rank gives 1 4 8 2 10 19 3 16 32 MATHEMATICA r = 1/E; z = 12; t[n_, m_] := Sum[Floor[1 - r + n*(r + m)/k], {k, 1, Floor[n + m*n/r]}]; u = Table[t[n, m], {n, 1, z}, {m, 0, z}]; TableForm[u] (* A292964 array *) Table[t[n - k + 1, k - 1], {n, 1, z}, {k, n, 1, -1}] // Flatten (* A292964 sequence *) CROSSREFS Cf. A182801, A292963. Sequence in context: A125065 A109816 A296477 * A050128 A321119 A246202 Adjacent sequences: A292961 A292962 A292963 * A292965 A292966 A292967 KEYWORD nonn,easy,tabl AUTHOR Clark Kimberling, Oct 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 21:37 EDT 2023. Contains 361511 sequences. (Running on oeis4.)