login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072988
Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(3,1), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.
0
1, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3, 10, 3
OFFSET
0,2
COMMENTS
Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=3f(n-1)+f(n-2).
LINKS
M. Beattie, S. Dăscălescu and S. Raianu, Lifting of Nichols Algebras of Type B_2, arXiv:math/0204075 [math.QA], 2002.
FORMULA
For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*T(n-2).
O.g.f.: -(1+3*x+9*x^2)/((x-1)*(x+1)). - R. J. Mathar, Dec 05 2007
EXAMPLE
nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, nu(6)=1189+407q+336q^2+246q^3+147q^4+29q^5+10q^6. By listing the coefficients of the highest power in each nu(n) we get 1,3,10,3,10,3,10,...
CROSSREFS
Cf. A006190.
Sequence in context: A321118 A167790 A010708 * A170855 A338683 A361943
KEYWORD
nonn
AUTHOR
Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002
STATUS
approved