OFFSET
1,2
FORMULA
G.f.: Sum_{k >= 1} (1 - 1/(1 + k * x^k)^k).
If p is prime, a(p) = (-1)^(p-1) + p^2.
MATHEMATICA
a[n_] := -DivisorSum[n, (-n/#)^# * Binomial[# + n/# - 1, #] &]; Array[a, 40] (* Amiram Eldar, Apr 24 2021 *)
PROG
(PARI) a(n) = -sumdiv(n, d, (-n/d)^d*binomial(d+n/d-1, d));
(PARI) N=66; x='x+O('x^N); Vec(sum(k=1, N, 1-1/(1+k*x^k)^k))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 23 2021
STATUS
approved