login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320583
Irregular triangle read by rows: T(n,k) is the number of connected permutation graphs on n vertices with domination number k, with 1 <= k <= floor(n/2).
2
1, 1, 3, 10, 3, 43, 28, 223, 236, 2, 1364, 1842, 62, 9643, 18433, 1015, 2, 77545, 181568, 14146, 84, 699954, 1938199, 189077, 2093, 2
OFFSET
1,3
LINKS
Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points, arXiv:1810.03409 [math.CO], 2018.
FORMULA
T(n,n/2) = 2 for even n. See Theorem 4.5 in the link by Theresa Baren, et al.
T(n,k) = A320578(n,k) - A320579(n,k).
T(n,1) = A320578(n,1).
EXAMPLE
Triangle begins:
1;
1;
3;
10, 3;
43, 28;
223, 236, 2;
...
PROG
(Python)
import networkx as nx
import math
def permutation(lst):
if len(lst) == 0:
return []
if len(lst) == 1:
return [lst]
l = []
for i in range(len(lst)):
m = lst[i]
remLst = lst[:i] + lst[i + 1:]
for p in permutation(remLst):
l.append([m] + p)
return l
def generatePermsOfSizeN(n):
lst = []
for i in range(n):
lst.append(i+1)
return permutation(lst)
def powersetHelper(A):
if A == []:
return [[]]
a = A[0]
incomplete_pset = powersetHelper(A[1:])
rest = []
for set in incomplete_pset:
rest.append([a] + set)
return rest + incomplete_pset
def powerset(A):
ps = powersetHelper(A)
ps.sort(key = len)
return ps
print(ps)
def countcnctdDomNumbersOnN(n):
lst=[]
l=[]
perms = generatePermsOfSizeN(n)
for i in range(n):
lst.append(i+1)
ps = powerset(lst)
dic={}
for perm in perms:
tempGraph = nx.Graph()
tempGraph.add_nodes_from(perm)
for i in range(len(perm)):
for k in range(i+1, len(perm)):
if perm[k] < perm[i]:
tempGraph.add_edge(perm[i], perm[k])
if nx.is_connected(tempGraph)==True:
for p in ps:
if nx.is_dominating_set(tempGraph, p):
dom = len(p)
if dom in dic:
dic[dom] += 1
break
else:
dic[dom] = 1
break
return dic
CROSSREFS
Sequence in context: A170855 A338683 A361943 * A339317 A131814 A003620
KEYWORD
nonn,hard,tabf,more
AUTHOR
STATUS
approved