login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A320583 Irregular triangle read by rows: T(n,k) is the number of connected permutation graphs on n vertices with domination number k, with 1 <= k <= floor(n/2). 2
1, 1, 3, 10, 3, 43, 28, 223, 236, 2, 1364, 1842, 62, 9643, 18433, 1015, 2, 77545, 181568, 14146, 84, 699954, 1938199, 189077, 2093, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

LINKS

Table of n, a(n) for n=1..26.

Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points, arXiv:1810.03409 [math.CO], 2018.

FORMULA

T(n,n/2) = 2 for even n. See Theorem 4.5 in the link by Theresa Baren, et al.

T(n,k) = A320578(n,k) - A320579(n,k).

T(n,1) = A320578(n,1).

EXAMPLE

Triangle begins:

    1;

    1;

    3;

   10,   3;

   43,  28;

  223, 236,  2;

  ...

PROG

(Python)

import networkx as nx

import math

def permutation(lst):

    if len(lst) == 0:

        return []

    if len(lst) == 1:

        return [lst]

    l = []

    for i in range(len(lst)):

        m = lst[i]

        remLst = lst[:i] + lst[i + 1:]

        for p in permutation(remLst):

            l.append([m] + p)

    return l

def generatePermsOfSizeN(n):

    lst = []

    for i in range(n):

        lst.append(i+1)

    return permutation(lst)

def powersetHelper(A):

    if A == []:

        return [[]]

    a = A[0]

    incomplete_pset = powersetHelper(A[1:])

    rest = []

    for set in incomplete_pset:

        rest.append([a] + set)

    return rest + incomplete_pset

def powerset(A):

    ps = powersetHelper(A)

    ps.sort(key = len)

    return ps

    print(ps)

def countcnctdDomNumbersOnN(n):

    lst=[]

    l=[]

    perms = generatePermsOfSizeN(n)

    for i in range(n):

        lst.append(i+1)

    ps = powerset(lst)

    dic={}

    for perm in perms:

        tempGraph = nx.Graph()

        tempGraph.add_nodes_from(perm)

        for i in range(len(perm)):

            for k in range(i+1, len(perm)):

                if perm[k] < perm[i]:

                    tempGraph.add_edge(perm[i], perm[k])

        if nx.is_connected(tempGraph)==True:

            for p in ps:

                if nx.is_dominating_set(tempGraph, p):

                    dom = len(p)

                    if dom in dic:

                        dic[dom] += 1

                        break

                    else:

                        dic[dom] = 1

                        break

    return dic

CROSSREFS

Cf. A320578, A320579.

Sequence in context: A010708 A072988 A170855 * A131814 A003620 A235923

Adjacent sequences:  A320580 A320581 A320582 * A320584 A320585 A320586

KEYWORD

nonn,hard,tabf,more

AUTHOR

James Hammer, Daniel A. McGinnis, Oct 15 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 00:16 EST 2019. Contains 329812 sequences. (Running on oeis4.)