login
A320579
Triangle read by rows: T(n,k) is the number of disconnected permutation graphs on n vertices with domination number k, with 2 <= k <= n.
2
1, 2, 1, 7, 3, 1, 26, 18, 4, 1, 115, 111, 27, 5, 1, 592, 771, 186, 37, 6, 1, 3532, 5906, 1459, 274, 48, 7, 1, 24212, 49982, 12643, 2253, 378, 60, 8, 1, 188869, 466314, 120252, 20228, 3230, 499, 73, 9, 1
OFFSET
2,2
LINKS
Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points, arXiv:1810.03409 [math.CO], 2018.
FORMULA
T(n,k) = A320578(n,k) - A320583(n,k).
EXAMPLE
Triangle begins:
1;
2, 1;
7, 3, 1;
26, 18, 4, 1;
115, 111, 27, 5, 1;
592, 771, 186, 37, 6, 1;
...
PROG
(Python)
import networkx as nx
import math
def permutation(lst):
if len(lst) == 0:
return []
if len(lst) == 1:
return [lst]
l = []
for i in range(len(lst)):
m = lst[i]
remLst = lst[:i] + lst[i + 1:]
for p in permutation(remLst):
l.append([m] + p)
return l
def generatePermsOfSizeN(n):
lst = []
for i in range(n):
lst.append(i+1)
return permutation(lst)
def powersetHelper(A):
if A == []:
return [[]]
a = A[0]
incomplete_pset = powersetHelper(A[1:])
rest = []
for set in incomplete_pset:
rest.append([a] + set)
return rest + incomplete_pset
def powerset(A):
ps = powersetHelper(A)
ps.sort(key = len)
return ps
print(ps)
def countdisDomNumbersOnN(n):
lst=[]
l=[]
perms = generatePermsOfSizeN(n)
for i in range(n):
lst.append(i+1)
ps = powerset(lst)
dic={}
for perm in perms:
tempGraph = nx.Graph()
tempGraph.add_nodes_from(perm)
for i in range(len(perm)):
for k in range(i+1, len(perm)):
if perm[k] < perm[i]:
tempGraph.add_edge(perm[i], perm[k])
if nx.is_connected(tempGraph)==False:
for p in ps:
if nx.is_dominating_set(tempGraph, p):
dom = len(p)
if dom in dic:
dic[dom] += 1
break
else:
dic[dom] = 1
break
return dic
CROSSREFS
Sequence in context: A197328 A352247 A136535 * A091370 A125697 A090699
KEYWORD
nonn,tabl,hard,more
AUTHOR
STATUS
approved