%I #21 Oct 18 2018 09:46:29
%S 1,2,1,7,3,1,26,18,4,1,115,111,27,5,1,592,771,186,37,6,1,3532,5906,
%T 1459,274,48,7,1,24212,49982,12643,2253,378,60,8,1,188869,466314,
%U 120252,20228,3230,499,73,9,1
%N Triangle read by rows: T(n,k) is the number of disconnected permutation graphs on n vertices with domination number k, with 2 <= k <= n.
%H Theresa Baren, Michael Cory, Mia Friedberg, Peter Gardner, James Hammer, Joshua Harrington, Daniel McGinnis, Riley Waechter, Tony W. H. Wong, <a href="https://arxiv.org/abs/1810.03409">On the Domination Number of Permutation Graphs and an Application to Strong Fixed Points</a>, arXiv:1810.03409 [math.CO], 2018.
%F T(n,k) = A320578(n,k) - A320583(n,k).
%e Triangle begins:
%e 1;
%e 2, 1;
%e 7, 3, 1;
%e 26, 18, 4, 1;
%e 115, 111, 27, 5, 1;
%e 592, 771, 186, 37, 6, 1;
%e ...
%o (Python)
%o import networkx as nx
%o import math
%o def permutation(lst):
%o if len(lst) == 0:
%o return []
%o if len(lst) == 1:
%o return [lst]
%o l = []
%o for i in range(len(lst)):
%o m = lst[i]
%o remLst = lst[:i] + lst[i + 1:]
%o for p in permutation(remLst):
%o l.append([m] + p)
%o return l
%o def generatePermsOfSizeN(n):
%o lst = []
%o for i in range(n):
%o lst.append(i+1)
%o return permutation(lst)
%o def powersetHelper(A):
%o if A == []:
%o return [[]]
%o a = A[0]
%o incomplete_pset = powersetHelper(A[1:])
%o rest = []
%o for set in incomplete_pset:
%o rest.append([a] + set)
%o return rest + incomplete_pset
%o def powerset(A):
%o ps = powersetHelper(A)
%o ps.sort(key = len)
%o return ps
%o print(ps)
%o def countdisDomNumbersOnN(n):
%o lst=[]
%o l=[]
%o perms = generatePermsOfSizeN(n)
%o for i in range(n):
%o lst.append(i+1)
%o ps = powerset(lst)
%o dic={}
%o for perm in perms:
%o tempGraph = nx.Graph()
%o tempGraph.add_nodes_from(perm)
%o for i in range(len(perm)):
%o for k in range(i+1, len(perm)):
%o if perm[k] < perm[i]:
%o tempGraph.add_edge(perm[i], perm[k])
%o if nx.is_connected(tempGraph)==False:
%o for p in ps:
%o if nx.is_dominating_set(tempGraph,p):
%o dom = len(p)
%o if dom in dic:
%o dic[dom] += 1
%o break
%o else:
%o dic[dom] = 1
%o break
%o return dic
%Y CF. A320578, A320583.
%K nonn,tabl,hard,more
%O 2,2
%A _James Hammer_, _Daniel A. McGinnis_, Oct 15 2018