login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(3,1), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.
0

%I #11 Oct 06 2016 15:29:25

%S 1,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,

%T 10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,

%U 3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3,10,3

%N Coefficient of the highest power of q in the expansion of nu(0)=1, nu(1)=b and for n>=2, nu(n)=b*nu(n-1)+lambda*(n-1)_q*nu(n-2) with (b,lambda)=(3,1), where (n)_q=(1+q+...+q^(n-1)) and q is a root of unity.

%C Instead of listing the coefficients of the highest power of q in each nu(n), if we list the coefficients of the smallest power of q (i.e., constant terms), we get a weighted Fibonacci numbers described by f(0)=1, f(1)=1, for n>=2, f(n)=3f(n-1)+f(n-2).

%H M. Beattie, S. Dăscălescu and S. Raianu, <a href="https://arxiv.org/abs/math/0204075">Lifting of Nichols Algebras of Type B_2</a>, arXiv:math/0204075 [math.QA], 2002.

%F For given b and lambda, the recurrence relation is given by; t(0)=1, t(1)=b, t(2)=b^2+lambda and for n>=3, t(n)=lambda*T(n-2).

%F O.g.f.: -(1+3*x+9*x^2)/((x-1)*(x+1)). - _R. J. Mathar_, Dec 05 2007

%e nu(0)=1, nu(1)=3, nu(2)=10, nu(3)=33+3q, nu(4)=109+19q+10q^2, nu(5)=360+93q+66q^2+36q^3+3q^4, nu(6)=1189+407q+336q^2+246q^3+147q^4+29q^5+10q^6. By listing the coefficients of the highest power in each nu(n) we get 1,3,10,3,10,3,10,...

%Y Cf. A006190.

%K nonn

%O 0,2

%A Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002