OFFSET
0,4
COMMENTS
a(n) is always an integer. k = A038754(n) - 1 is the smallest index that A006134(k) is divisible by 3^n.
The next term has 140 digits.
For primes p we have A006134(p-1) == Legendre(p, 3) (mod p^2). For composite n that is a power of 3, n^2 is also divisible by A006134(n-1). Are there any other such n?
Conjecture: for n > 1, a(n) == 1 (mod 27) for even n, a(n) == 13 (mod 27) for odd n.
EXAMPLE
a(1) = (binomial(0, 0) + binomial(2, 1))/3 = 3/3 = 1.
a(2) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2))/9 = 9/9 = 1.
a(3) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + binomial(6, 3) + binomial(8, 4) + binomial(10, 5))/27 = 351/27 = 13.
MATHEMATICA
Array[Sum[Binomial[2 k, k], {k, 0, #}] &[((1 + Boole[OddQ@ #]) 3^((# - Boole[OddQ@ #])/2)) - 1]/3^# &, 9] (* Michael De Vlieger, Oct 22 2018 *)
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 18 2018
STATUS
approved