login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320627
a(n) = A006134(A038754(n) - 1)/3^n.
1
1, 1, 1, 13, 217, 12938197, 913083596083, 3836387399699939518675459471, 18744974860247264575032720770000376335095039, 25741458812593689971179132474269180614331431944325835714919500509967358371226305360396760987
OFFSET
0,4
COMMENTS
a(n) is always an integer. k = A038754(n) - 1 is the smallest index that A006134(k) is divisible by 3^n.
The next term has 140 digits.
For primes p we have A006134(p-1) == Legendre(p, 3) (mod p^2). For composite n that is a power of 3, n^2 is also divisible by A006134(n-1). Are there any other such n?
Conjecture: for n > 1, a(n) == 1 (mod 27) for even n, a(n) == 13 (mod 27) for odd n.
EXAMPLE
a(1) = (binomial(0, 0) + binomial(2, 1))/3 = 3/3 = 1.
a(2) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2))/9 = 9/9 = 1.
a(3) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + binomial(6, 3) + binomial(8, 4) + binomial(10, 5))/27 = 351/27 = 13.
MATHEMATICA
Array[Sum[Binomial[2 k, k], {k, 0, #}] &[((1 + Boole[OddQ@ #]) 3^((# - Boole[OddQ@ #])/2)) - 1]/3^# &, 9] (* Michael De Vlieger, Oct 22 2018 *)
PROG
(PARI) A006134(n) = sum(k=0, n, binomial(2*k, k))
a(n) = if(n%2, A006134(2*3^((n-1)/2)-1)/3^n, A006134(3^(n/2)-1)/3^n)
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 18 2018
STATUS
approved