login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320625
a(n) = A006134((3^n-1)/2)/3^n.
1
1, 1, 11, 520783, 1777232132705889910073, 1989655738014873996462170980393276816167557169374094238588991602837393
OFFSET
0,3
COMMENTS
a(n) is always an integer.
a(6) has 215 digits and a(7) has 654 digits.
For primes p we have A006134((p-1)/2) == Legendre(p, 3) (mod p). For composite n equal to a power of 3, n is also divisible by A006134((n-1)/2). Odd composite n not a power of 3 such that n divides A006134((n-1)/2) are n = 99, 1539, ... What's the next? Are there similar values of n not divisible by 3?
Conjecture: for n > 0, a(n) == 1 (mod 3) for odd n, a(n) == 2 (mod 3) for even n.
EXAMPLE
a(1) = (binomial(0, 0) + binomial(2, 1))/3 = 3/3 = 1.
a(2) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + binomial(6, 3) + binomial(8, 4))/9 = 99/9 = 11.
MAPLE
a:=n->add(binomial(2*k, k), k=0..(3^n-1)/2)/3^n: seq(a(n), n=0..5); # Muniru A Asiru, Oct 23 2018
MATHEMATICA
Array[Sum[Binomial[2 k, k], {k, 0, #}] &[(3^# - 1)/2]/3^# &, 5] (* Michael De Vlieger, Oct 22 2018 *)
PROG
(PARI) A006134(n) = sum(k=0, n, binomial(2*k, k))
a(n) = A006134((3^n-1)/2)/3^n
(GAP) List([0..5], n->Sum([0..(3^n-1)/2], k->Binomial(2*k, k))/3^n); # Muniru A Asiru, Oct 23 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 18 2018
STATUS
approved