login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320624
a(n) = (A006134((prime(n)-1)/2) - Legendre(prime(n), 3))/prime(n).
1
1, 2, 4, 32, 98, 1034, 3484, 41582, 1868198, 6751460, 330246410, 4522217312, 16829506610, 235344648416, 12559206444236, 683534482499900, 2599887148071402, 144419015585768252, 2117118216002111198, 8120930597438173620
OFFSET
2,2
COMMENTS
a(n) is always an integer.
Primes p such that p^2 divides A006134((p-1)/2) - Legendre(p, 3) are p = 103, ... What's the next?
FORMULA
a(2) = (binomial(0, 0) + binomial(2, 1))/3 = 3/3 = 1.
a(3) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + 1)/5 = 10/5 = 2.
a(4) = (binomial(0, 0) + binomial(2, 1) + binomial(4, 2) + binomial(6, 3) - 1)/7 = 28/7 = 4.
PROG
(PARI) A006134(n) = sum(k=0, n, binomial(2*k, k))
a(n) = my(p=prime(n)); (A006134((p-1)/2) - kronecker(p, 3))/p
CROSSREFS
KEYWORD
nonn
AUTHOR
Jianing Song, Oct 18 2018
STATUS
approved