login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A197099
Define the array k(n,x) = number of m such that tau(gcd(n,m)) is x where m runs from 1 to n. Also define h(n,x) = Sum_{d|n : tau(d) = x} d. The sequence contains numbers n such that k(n,x)*x = h(n,x) has at least one solution x.
0
1, 2, 4, 32, 48, 180, 189, 224, 288, 360, 432, 1280, 1344, 1536, 1600, 4096, 28672, 46656, 54000, 108000, 131220, 150528, 225792, 262440, 405450, 442800, 525312, 532480, 590400, 594000, 630784, 633600, 655360, 792000, 819200, 885600, 950400
OFFSET
1,2
COMMENTS
In the definition tau=A000005. By construction of the two arrays, their row sums and/or first moments are Sum_{x=1..z} k(x)*x = Sum_{x=1..z} h(x) = sigma(n) = A000203(n).
From R. J. Mathar, Oct 12 2011: (Start)
The table k(n,x) with row sums n is a frequency distribution of tau which starts in row n=1 with columns x >= 1 as follows:
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 0, 0, 0, 0, 0, 0, ...
2, 1, 0, 0, 0, 0, 0, 0, ...
2, 1, 1, 0, 0, 0, 0, 0, ...
4, 1, 0, 0, 0, 0, 0, 0, ...
2, 3, 0, 1, 0, 0, 0, 0, ...
6, 1, 0, 0, 0, 0, 0, 0, ...
4, 2, 1, 1, 0, 0, 0, 0, ...
6, 2, 1, 0, 0, 0, 0, 0, ...
4, 5, 0, 1, 0, 0, 0, 0, ...
10, 1, 0, 0, 0, 0, 0, 0, ...
4, 4, 2, 1, 0, 1, 0, 0, ...
By multiplying with the column number x we obtain another array x*k(n,x) which has row sums sigma(n):
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 2, 0, 0, 0, 0, 0, 0, ...
2, 2, 0, 0, 0, 0, 0, 0, ...
2, 2, 3, 0, 0, 0, 0, 0. ...
4, 2, 0, 0, 0, 0, 0, 0, ...
2, 6, 0, 4, 0, 0, 0, 0, ...
6, 2, 0, 0, 0, 0, 0, 0, ...
4, 4, 3, 4, 0, 0, 0, 0, ...
6, 4, 3, 0, 0, 0, 0, 0, ...
4, 10, 0, 4, 0, 0, 0, 0, ...
10, 2, 0, 0, 0, 0, 0, 0, ...
4, 8, 6, 4, 0, 6, 0, 0, ...
The array h(n,x) with another frequency distribution of tau and also rows sums sigma(n) starts in row n=1 as follows:
1, 0, 0, 0, 0, 0, 0, 0, ...
1, 2, 0, 0, 0, 0, 0, 0, ...
1, 3, 0, 0, 0, 0, 0, 0, ...
1, 2, 4, 0, 0, 0, 0, 0, ...
1, 5, 0, 0, 0, 0, 0, 0, ...
1, 5, 0, 6, 0, 0, 0, 0, ...
1, 7, 0, 0, 0, 0, 0, 0, ...
1, 2, 4, 8, 0, 0, 0, 0, ...
1, 3, 9, 0, 0, 0, 0, 0, ...
1, 7, 0, 10, 0, 0, 0, 0, ...
1, 11, 0, 0, 0, 0, 0, 0, ...
1, 5, 4, 6, 0, 12, 0, 0, ...
Whenever the previous two tables match at one position (n,x) for a nonzero entry, we add the corresponding row number n to the sequence. The rows at n=4, (2,2,3) and (1,2,4) for example, match at x=2, which adds n=4 to the sequence. (End)
EXAMPLE
For n = 189: 21|189, 27|189 and tau(21) = tau(27) = 4; h(4) = Sum_{d|189; tau(d) = 4} d = 21+27 = k(4)*4 = 12*4 = 48. Therefore 189 is in the sequence.
MAPLE
k := proc(n, x)
a := 0 ;
for m from 1 to n do
if numtheory[tau](igcd(n, m)) = x then
a := a+1 ;
end if;
end do;
a ;
end proc:
h := proc(n, x)
a := 0 ;
for d in numtheory[divisors](n) do
if numtheory[tau](d) = x then
a := a+d ;
end if;
end do;
a ;
end proc:
isA197099 := proc(n)
for x from 1 to n do
if h(n, x) = x*k(n, x) and h(n, x) <> 0 then
return true;
end if;
end do:
false;
end proc:
for n from 1 do
if isA197099(n) then
print(n);
end if;
end do: # R. J. Mathar, Oct 12 2011
MATHEMATICA
k[n_, x_] := Module[{a = 0}, For[m = 1, m <= n, m++, If[DivisorSigma[0, GCD[n, m]] == x, a++]]; a];
h[n_, x_] := Module[{a = 0}, Do[If[DivisorSigma[0, d] == x, a += d], {d, Divisors[n]}]; a];
isA197099[n_] := For[x = 1, x <= n, x++, If[h[n, x] == x*k[n, x] && h[n, x] != 0, Return[True]]; False];
Reap[For[n = 1, n <= 1000, n++, If[isA197099[n], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 07 2024, after R. J. Mathar *)
PROG
(Sage)
def is_A197099(n): # extremely inefficient but useful for reference purposes
k = lambda x: sum(1 for m in (1..n) if number_of_divisors(gcd(n, m))==x)
h = lambda x: sum(d for d in divisors(n) if number_of_divisors(d)==x)
h_values = ((x, h(x)) for x in range(1, n + 1))
return any(hx != 0 and hx % x == 0 and hx == x*k(x) for x, hx in h_values)
[n for n in range(267) if is_A197099(n)]
# D. S. McNeil, Oct 12 2011
CROSSREFS
Sequence in context: A299783 A293760 A101575 * A009098 A192387 A320624
KEYWORD
nonn
AUTHOR
Naohiro Nomoto, Oct 10 2011
STATUS
approved