login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Define the array k(n,x) = number of m such that tau(gcd(n,m)) is x where m runs from 1 to n. Also define h(n,x) = Sum_{d|n : tau(d) = x} d. The sequence contains numbers n such that k(n,x)*x = h(n,x) has at least one solution x.
0

%I #41 Jun 07 2024 11:43:47

%S 1,2,4,32,48,180,189,224,288,360,432,1280,1344,1536,1600,4096,28672,

%T 46656,54000,108000,131220,150528,225792,262440,405450,442800,525312,

%U 532480,590400,594000,630784,633600,655360,792000,819200,885600,950400

%N Define the array k(n,x) = number of m such that tau(gcd(n,m)) is x where m runs from 1 to n. Also define h(n,x) = Sum_{d|n : tau(d) = x} d. The sequence contains numbers n such that k(n,x)*x = h(n,x) has at least one solution x.

%C In the definition tau=A000005. By construction of the two arrays, their row sums and/or first moments are Sum_{x=1..z} k(x)*x = Sum_{x=1..z} h(x) = sigma(n) = A000203(n).

%C From _R. J. Mathar_, Oct 12 2011: (Start)

%C The table k(n,x) with row sums n is a frequency distribution of tau which starts in row n=1 with columns x >= 1 as follows:

%C 1, 0, 0, 0, 0, 0, 0, 0, ...

%C 1, 1, 0, 0, 0, 0, 0, 0, ...

%C 2, 1, 0, 0, 0, 0, 0, 0, ...

%C 2, 1, 1, 0, 0, 0, 0, 0, ...

%C 4, 1, 0, 0, 0, 0, 0, 0, ...

%C 2, 3, 0, 1, 0, 0, 0, 0, ...

%C 6, 1, 0, 0, 0, 0, 0, 0, ...

%C 4, 2, 1, 1, 0, 0, 0, 0, ...

%C 6, 2, 1, 0, 0, 0, 0, 0, ...

%C 4, 5, 0, 1, 0, 0, 0, 0, ...

%C 10, 1, 0, 0, 0, 0, 0, 0, ...

%C 4, 4, 2, 1, 0, 1, 0, 0, ...

%C By multiplying with the column number x we obtain another array x*k(n,x) which has row sums sigma(n):

%C 1, 0, 0, 0, 0, 0, 0, 0, ...

%C 1, 2, 0, 0, 0, 0, 0, 0, ...

%C 2, 2, 0, 0, 0, 0, 0, 0, ...

%C 2, 2, 3, 0, 0, 0, 0, 0. ...

%C 4, 2, 0, 0, 0, 0, 0, 0, ...

%C 2, 6, 0, 4, 0, 0, 0, 0, ...

%C 6, 2, 0, 0, 0, 0, 0, 0, ...

%C 4, 4, 3, 4, 0, 0, 0, 0, ...

%C 6, 4, 3, 0, 0, 0, 0, 0, ...

%C 4, 10, 0, 4, 0, 0, 0, 0, ...

%C 10, 2, 0, 0, 0, 0, 0, 0, ...

%C 4, 8, 6, 4, 0, 6, 0, 0, ...

%C The array h(n,x) with another frequency distribution of tau and also rows sums sigma(n) starts in row n=1 as follows:

%C 1, 0, 0, 0, 0, 0, 0, 0, ...

%C 1, 2, 0, 0, 0, 0, 0, 0, ...

%C 1, 3, 0, 0, 0, 0, 0, 0, ...

%C 1, 2, 4, 0, 0, 0, 0, 0, ...

%C 1, 5, 0, 0, 0, 0, 0, 0, ...

%C 1, 5, 0, 6, 0, 0, 0, 0, ...

%C 1, 7, 0, 0, 0, 0, 0, 0, ...

%C 1, 2, 4, 8, 0, 0, 0, 0, ...

%C 1, 3, 9, 0, 0, 0, 0, 0, ...

%C 1, 7, 0, 10, 0, 0, 0, 0, ...

%C 1, 11, 0, 0, 0, 0, 0, 0, ...

%C 1, 5, 4, 6, 0, 12, 0, 0, ...

%C Whenever the previous two tables match at one position (n,x) for a nonzero entry, we add the corresponding row number n to the sequence. The rows at n=4, (2,2,3) and (1,2,4) for example, match at x=2, which adds n=4 to the sequence. (End)

%e For n = 189: 21|189, 27|189 and tau(21) = tau(27) = 4; h(4) = Sum_{d|189; tau(d) = 4} d = 21+27 = k(4)*4 = 12*4 = 48. Therefore 189 is in the sequence.

%p k := proc(n,x)

%p a := 0 ;

%p for m from 1 to n do

%p if numtheory[tau](igcd(n,m)) = x then

%p a := a+1 ;

%p end if;

%p end do;

%p a ;

%p end proc:

%p h := proc(n,x)

%p a := 0 ;

%p for d in numtheory[divisors](n) do

%p if numtheory[tau](d) = x then

%p a := a+d ;

%p end if;

%p end do;

%p a ;

%p end proc:

%p isA197099 := proc(n)

%p for x from 1 to n do

%p if h(n,x) = x*k(n,x) and h(n,x) <> 0 then

%p return true;

%p end if;

%p end do:

%p false;

%p end proc:

%p for n from 1 do

%p if isA197099(n) then

%p print(n);

%p end if;

%p end do: # _R. J. Mathar_, Oct 12 2011

%t k[n_, x_] := Module[{a = 0}, For[m = 1, m <= n, m++, If[DivisorSigma[0, GCD[n, m]] == x, a++]]; a];

%t h[n_, x_] := Module[{a = 0}, Do[If[DivisorSigma[0, d] == x, a += d], {d, Divisors[n]}]; a];

%t isA197099[n_] := For[x = 1, x <= n, x++, If[h[n, x] == x*k[n, x] && h[n, x] != 0, Return[True]]; False];

%t Reap[For[n = 1, n <= 1000, n++, If[isA197099[n], Print[n]; Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Jun 07 2024, after _R. J. Mathar_ *)

%o (Sage)

%o def is_A197099(n): # extremely inefficient but useful for reference purposes

%o k = lambda x: sum(1 for m in (1..n) if number_of_divisors(gcd(n,m))==x)

%o h = lambda x: sum(d for d in divisors(n) if number_of_divisors(d)==x)

%o h_values = ((x, h(x)) for x in range(1, n + 1))

%o return any(hx != 0 and hx % x == 0 and hx == x*k(x) for x, hx in h_values)

%o [n for n in range(267) if is_A197099(n)]

%o # _D. S. McNeil_, Oct 12 2011

%K nonn

%O 1,2

%A _Naohiro Nomoto_, Oct 10 2011