login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A243130
1024*n^10 - 2304*n^8 + 1792*n^6 - 560*n^4 + 60*n^2 - 1.
2
-1, 11, 564719, 46611179, 929944511, 9127651499, 58130412911, 276182038859, 1061324394239, 3472236254411, 10011386405999, 26069206375211, 62418042417599, 139296285729899, 292810020137711, 584605483663499, 1116034330278911, 2048348816684939, 3630829342034159
OFFSET
0,2
COMMENTS
Chebyshev polynomial of the second kind U(10,n).
LINKS
Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
FORMULA
G.f.: (-1 + 22*x + 564543*x^2 + 40400040*x^3 + 448278942*x^4 + 1368702180*x^5 + 1368701718*x^6 + 448279272*x^7 + 40399875*x^8 + 564598*x^9 + 11*x^10)/(1 - x)^11.
a(n) = (32*n^5 - 16*n^4 - 32*n^3 +12*n^2 + 6*n - 1)*(32*n^5 + 16*n^4 - 32*n^3 -12*n^2 + 6*n + 1).
MATHEMATICA
Table[ChebyshevU[10, n], {n, 0, 20}] (* or *) Table[1024 n^10 - 2304 n^8 + 1792 n^6 - 560 n^4 + 60 n^2 - 1, {n, 0, 20}]
LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {-1, 11, 564719, 46611179, 929944511, 9127651499, 58130412911, 276182038859, 1061324394239, 3472236254411, 10011386405999}, 20] (* Harvey P. Dale, Dec 10 2023 *)
PROG
(Magma) [1024*n^10-2304*n^8+1792*n^6-560*n^4+60*n^2-1: n in [0..20]];
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vincenzo Librandi, May 30 2014
STATUS
approved