Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Dec 10 2023 19:14:18
%S -1,11,564719,46611179,929944511,9127651499,58130412911,276182038859,
%T 1061324394239,3472236254411,10011386405999,26069206375211,
%U 62418042417599,139296285729899,292810020137711,584605483663499,1116034330278911,2048348816684939,3630829342034159
%N 1024*n^10 - 2304*n^8 + 1792*n^6 - 560*n^4 + 60*n^2 - 1.
%C Chebyshev polynomial of the second kind U(10,n).
%H Vincenzo Librandi, <a href="/A243130/b243130.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
%F G.f.: (-1 + 22*x + 564543*x^2 + 40400040*x^3 + 448278942*x^4 + 1368702180*x^5 + 1368701718*x^6 + 448279272*x^7 + 40399875*x^8 + 564598*x^9 + 11*x^10)/(1 - x)^11.
%F a(n) = (32*n^5 - 16*n^4 - 32*n^3 +12*n^2 + 6*n - 1)*(32*n^5 + 16*n^4 - 32*n^3 -12*n^2 + 6*n + 1).
%t Table[ChebyshevU[10, n], {n, 0, 20}] (* or *) Table[1024 n^10 - 2304 n^8 + 1792 n^6 - 560 n^4 + 60 n^2 - 1, {n, 0, 20}]
%t LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{-1,11,564719,46611179,929944511,9127651499,58130412911,276182038859,1061324394239,3472236254411,10011386405999},20] (* _Harvey P. Dale_, Dec 10 2023 *)
%o (Magma) [1024*n^10-2304*n^8+1792*n^6-560*n^4+60*n^2-1: n in [0..20]];
%Y Cf. A144138, A144139, A242850, A242851.
%K sign,easy
%O 0,2
%A _Vincenzo Librandi_, May 30 2014