This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294982 Number of compositions (ordered partitions) of 1 into exactly 3n+1 powers of 1/(n+1). 2
 1, 13, 217, 4245, 90376, 2019836, 46570140, 1097525253, 26293568950, 638048716305, 15643738390215, 386826618273420, 9633468179090952, 241366000080757480, 6078975012187601768, 153798067122829610085, 3906583987216447704594, 99579591801208823965115 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..700 EXAMPLE a(0) = 1: [1]. a(1) = 13: [1/4,1/4,1/4,1/4], [1/2,1/4,1/8,1/8], [1/2,1/8,1/4,1/8], [1/2,1/8,1/8,1/4], [1/4,1/2,1/8,1/8], [1/4,1/8,1/2,1/8], [1/4,1/8,1/8,1/2], [1/8,1/2,1/4,1/8], [1/8,1/2,1/8,1/4], [1/8,1/4,1/2,1/8], [1/8,1/4,1/8,1/2], [1/8,1/8,1/2,1/4], [1/8,1/8,1/4,1/2]. MAPLE a:= proc(n) option remember; `if`(n<2, 12*n+1, (3*n-1)*(3*n+1)*       3*((15*n^3-31*n^2-4*n+8)*n*a(n-1)-3*(3*n-4)*(3*n-2)*       (3*n^2-2*n-2)*a(n-2))/((n+1)*(4*n+2)*(3*n^2-8*n+3)*n^2))     end: seq(a(n), n=0..20); MATHEMATICA a[n_] := a[n] = If[n < 2, 12*n + 1, (3*n - 1)*(3*n + 1)*3*((15*n^3 - 31*n^2 - 4*n + 8)*n*a[n-1] - 3*(3*n - 4)*(3*n - 2)*(3*n^2 - 2*n - 2)*a[n-2])/((n + 1)*(4*n + 2)*(3*n^2 - 8*n + 3)*n^2)]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 21 2018, translated from Maple *) CROSSREFS Row n=3 of A294746. Sequence in context: A140517 A096141 A218475 * A320627 A059525 A086147 Adjacent sequences:  A294979 A294980 A294981 * A294983 A294984 A294985 KEYWORD nonn AUTHOR Alois P. Heinz, Nov 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 11:14 EDT 2019. Contains 326057 sequences. (Running on oeis4.)