login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294983
Number of compositions (ordered partitions) of 1 into exactly 4n+1 powers of 1/(n+1).
2
1, 75, 8317, 1239823, 216456376, 41175714454, 8251690444250, 1713228373452375, 365077361327242168, 79376343363731999772, 17538231051073300512165, 3926523351382832339690135, 888819911396229761050640552, 203083664214425241278951079860
OFFSET
0,2
LINKS
FORMULA
From Vaclav Kotesovec, Sep 20 2019: (Start)
Recurrence: 3*(n-1)^2*n^3*(n+1)*(2*n + 1)*(3*n + 1)*(3*n + 2)*(1794*n^8 - 24743*n^7 + 137870*n^6 - 403038*n^5 + 671286*n^4 - 647019*n^3 + 349914*n^2 - 97024*n + 10624)*a(n) = 4*(n-1)^2*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*(249366*n^11 - 3033833*n^10 + 13899420*n^9 - 28885850*n^8 + 21978374*n^7 + 11319871*n^6 - 24589048*n^5 + 5121972*n^4 + 6329552*n^3 - 2255040*n^2 - 432000*n + 176256)*a(n-1) - 64*(n-1)*(2*n - 3)*(2*n - 1)*(4*n - 5)*(4*n - 3)*(4*n - 1)*(4*n + 1)*(28704*n^10 - 307085*n^9 + 1172466*n^8 - 1799547*n^7 + 417441*n^6 + 1564368*n^5 - 1050675*n^4 - 368572*n^3 + 336852*n^2 + 24624*n - 25056)*a(n-2) + 256*(2*n - 5)*(2*n - 3)*(2*n - 1)*(4*n - 9)*(4*n - 7)*(4*n - 5)*(4*n - 3)*(4*n - 1)*(4*n + 1)*(1794*n^8 - 10391*n^7 + 14901*n^6 + 5043*n^5 - 16279*n^4 - 396*n^3 + 4872*n^2 + 72*n - 336)*a(n-3).
a(n) ~ 2^(8*n + 3/2) / (Pi^(3/2) * n^(3/2)). (End)
MAPLE
b:= proc(n, r, p, k) option remember;
`if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add(
b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r))))
end:
a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(4):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]];
a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[4];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
CROSSREFS
Row n=4 of A294746.
Sequence in context: A206696 A248545 A114910 * A361282 A093275 A251242
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 12 2017
STATUS
approved