login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


A294983
Number of compositions (ordered partitions) of 1 into exactly 4n+1 powers of 1/(n+1).
2
1, 75, 8317, 1239823, 216456376, 41175714454, 8251690444250, 1713228373452375, 365077361327242168, 79376343363731999772, 17538231051073300512165, 3926523351382832339690135, 888819911396229761050640552, 203083664214425241278951079860
OFFSET
0,2
LINKS
FORMULA
From Vaclav Kotesovec, Sep 20 2019: (Start)
Recurrence: 3*(n-1)^2*n^3*(n+1)*(2*n + 1)*(3*n + 1)*(3*n + 2)*(1794*n^8 - 24743*n^7 + 137870*n^6 - 403038*n^5 + 671286*n^4 - 647019*n^3 + 349914*n^2 - 97024*n + 10624)*a(n) = 4*(n-1)^2*n*(2*n - 1)*(4*n - 1)*(4*n + 1)*(249366*n^11 - 3033833*n^10 + 13899420*n^9 - 28885850*n^8 + 21978374*n^7 + 11319871*n^6 - 24589048*n^5 + 5121972*n^4 + 6329552*n^3 - 2255040*n^2 - 432000*n + 176256)*a(n-1) - 64*(n-1)*(2*n - 3)*(2*n - 1)*(4*n - 5)*(4*n - 3)*(4*n - 1)*(4*n + 1)*(28704*n^10 - 307085*n^9 + 1172466*n^8 - 1799547*n^7 + 417441*n^6 + 1564368*n^5 - 1050675*n^4 - 368572*n^3 + 336852*n^2 + 24624*n - 25056)*a(n-2) + 256*(2*n - 5)*(2*n - 3)*(2*n - 1)*(4*n - 9)*(4*n - 7)*(4*n - 5)*(4*n - 3)*(4*n - 1)*(4*n + 1)*(1794*n^8 - 10391*n^7 + 14901*n^6 + 5043*n^5 - 16279*n^4 - 396*n^3 + 4872*n^2 + 72*n - 336)*a(n-3).
a(n) ~ 2^(8*n + 3/2) / (Pi^(3/2) * n^(3/2)). (End)
MAPLE
b:= proc(n, r, p, k) option remember;
`if`(n<r, 0, `if`(r=0, `if`(n=0, p!, 0), add(
b(n-j, k*(r-j), p+j, k)/j!, j=0..min(n, r))))
end:
a:= n-> (k-> `if`(n=0, 1, b(k*n+1, 1, 0, n+1)))(4):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, r_, p_, k_] := b[n, r, p, k] = If[n < r, 0, If[r == 0, If[n == 0, p!, 0], Sum[b[n - j, k*(r - j), p + j, k]/j!, {j, 0, Min[n, r]}]]];
a[n_] := If[n == 0, 1, b[#*n + 1, 1, 0, n + 1]]&[4];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 21 2018, translated from Maple *)
CROSSREFS
Row n=4 of A294746.
Sequence in context: A206696 A248545 A114910 * A361282 A093275 A251242
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 12 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 02:41 EDT 2024. Contains 376016 sequences. (Running on oeis4.)