login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318724
Let f(0) = 0 and f(t*4^k + u) = i^t * ((1+i) * 2^k - f(u)) for any t in {1, 2, 3} and k >= 0 and u such that 0 <= u < 4^k (i denoting the imaginary unit); for any n >= 0, let g(n) = (f(A042968(n)) - 1 - i) / 2; a(n) is the square of the modulus of g(n).
2
1, 2, 1, 2, 5, 4, 5, 8, 5, 4, 5, 2, 8, 13, 10, 5, 10, 13, 18, 25, 20, 17, 16, 9, 13, 18, 13, 10, 17, 20, 25, 32, 25, 20, 17, 10, 10, 13, 8, 9, 16, 17, 20, 25, 18, 13, 10, 5, 32, 41, 34, 25, 34, 41, 50, 61, 52, 45, 40, 29, 29, 40, 45, 20, 17, 26, 37, 50, 53, 58
OFFSET
0,2
COMMENTS
See A318722 for the real part of g and additional comments.
LINKS
FORMULA
a(n) = A318722(n)^2 + A318723(n)^2.
If A048647(A042968(m)) = A042968(n), then a(m) = a(n).
PROG
(PARI) a(n) = my (d=Vecrev(digits(1+n+n\3, 4)), z=0); for (k=1, #d, if (d[k], z = I^d[k] * (-z + (1+I) * 2^(k-1)))); norm((z-1-I)/2)
CROSSREFS
KEYWORD
nonn,base,look
AUTHOR
Rémy Sigrist, Sep 02 2018
STATUS
approved