login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352479
Expansion of g.f.: 1/Sum_{p odd prime} x^p (odd powers only).
2
1, -1, 0, 1, -2, 1, 2, -5, 4, 3, -12, 14, 0, -26, 40, -15, -49, 104, -73, -77, 254, -256, -64, 569, -773, 167, 1154, -2109, 1184, 2008, -5307, 4623, 2487, -12350, 14756, -467, -26278, 41941, -17475, -49446, 109290, -80366, -74387, 263398, -275660, -51126, 584485, -820238
OFFSET
-2,5
FORMULA
a(-2) = 1; a(n) = -Sum_{k=1..n+2} A010051(2*k+3) * a(n-k).
EXAMPLE
G.f.: 1/x^3 - 1/x + x^3 - 2*x^5 + x^7 + 2*x^9 - 5*x^11 + ... .
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(1/sum(k=1, N, isprime(2*k-1)*x^k))
(PARI) a(n) = if(n==-2, 1, -sum(k=1, n+2, isprime(2*k+3)*a(n-k)));
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 17 2022
STATUS
approved