login
A318726
Number of integer compositions of n that have only one part or whose consecutive parts are indivisible and the last and first part are also indivisible.
13
1, 1, 1, 1, 3, 1, 5, 3, 8, 13, 12, 23, 27, 56, 64, 100, 150, 216, 325, 459, 700, 1007, 1493, 2186, 3203, 4735, 6929, 10243, 14952, 22024, 32366, 47558, 69906, 102634, 150984, 221713, 325919, 478842, 703648, 1034104, 1519432, 2233062, 3281004, 4821791, 7085359
OFFSET
1,5
LINKS
FORMULA
a(n) = A328598(n) + 1. - Gus Wiseman, Nov 04 2019
EXAMPLE
The a(10) = 13 compositions:
(10)
(7,3) (3,7) (6,4) (4,6)
(5,3,2) (5,2,3) (3,5,2) (3,2,5) (2,5,3) (2,3,5)
(3,2,3,2) (2,3,2,3)
The a(11) = 12 compositions:
(11)
(9,2) (2,9) (8,3) (3,8) (7,4) (4,7) (6,5) (5,6)
(5,2,4) (4,5,2) (2,4,5)
MATHEMATICA
Table[Select[Join@@Permutations/@IntegerPartitions[n], !MatchQ[#, ({___, x_, y_, ___}/; Divisible[x, y])|({y_, ___, x_}/; Divisible[x, y])]&]//Length, {n, 20}]
PROG
(PARI)
b(n, k, pred)={my(M=matrix(n, n)); for(n=1, n, M[n, n]=pred(k, n); for(j=1, n-1, M[n, j]=sum(i=1, n-j, if(pred(i, j), M[n-j, i], 0)))); sum(i=1, n, if(pred(i, k), M[n, i], 0))}
a(n)={1 + sum(k=1, n-1, b(n-k, k, (i, j)->i%j<>0))} \\ Andrew Howroyd, Sep 08 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 02 2018
EXTENSIONS
a(21)-a(28) from Robert Price, Sep 08 2018
Terms a(29) and beyond from Andrew Howroyd, Sep 08 2018
Name corrected by Gus Wiseman, Nov 04 2019
STATUS
approved