login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364034
Expansion of Sum_{k>0} x^k / (1 - 2*x^(2*k)).
1
1, 1, 3, 1, 5, 3, 9, 1, 19, 5, 33, 3, 65, 9, 135, 1, 257, 19, 513, 5, 1035, 33, 2049, 3, 4101, 65, 8211, 9, 16385, 135, 32769, 1, 65571, 257, 131085, 19, 262145, 513, 524355, 5, 1048577, 1035, 2097153, 33, 4194455, 2049, 8388609, 3, 16777225, 4101, 33554691, 65, 67108865, 8211, 134217765, 9
OFFSET
1,3
FORMULA
G.f.: Sum_{k>0} 2^(k-1) * x^(2*k-1) / (1 - x^(2*k-1)).
a(n) = Sum_{d|n, d odd} 2^((d-1)/2).
MATHEMATICA
a[n_] := DivisorSum[n, 2^((#-1)/2) &, OddQ[#] &]; Array[a, 50] (* Amiram Eldar, Jul 02 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (d%2==1)*2^((d-1)/2));
CROSSREFS
Sequence in context: A227361 A318726 A333871 * A373079 A212641 A195835
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jul 02 2023
STATUS
approved