login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A318120
Number of set partitions of {1,...,n} with relatively prime block sizes.
1
1, 1, 1, 4, 11, 51, 162, 876, 3761, 20782, 109293, 678569, 4038388, 27644436, 186524145, 1379760895, 10323844183, 82864869803, 674798169662, 5832742205056, 51385856585637, 474708148273586, 4486977535287371, 44152005855084345, 444577220573083896
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{|y| = n, GCD(y) = 1} n! / (Product_i y_i! * Product_i (y)_i!) where the sum is over all relatively prime integer partitions of n and (y)_i is the multiplicity of i in y.
EXAMPLE
The a(4) = 11 set partitions:
{{1},{2},{3},{4}}
{{1},{2},{3,4}}
{{1},{2,3},{4}}
{{1},{2,4},{3}}
{{1,2},{3},{4}}
{{1,3},{2},{4}}
{{1,4},{2},{3}}
{{1},{2,3,4}}
{{1,2,3},{4}}
{{1,2,4},{3}}
{{1,3,4},{2}}
MAPLE
b:= proc(n, t) option remember; `if`(n=0, `if`(t<2, 1, 0),
add(b(n-j, igcd(t, j))*binomial(n-1, j-1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 30 2019
MATHEMATICA
numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];
Table[Total[numSetPtnsOfType/@Select[IntegerPartitions[n], GCD@@#==1&]], {n, 10}]
(* Second program: *)
b[n_, t_] := b[n, t] = If[n == 0, If[t < 2, 1, 0],
Sum[b[n - j, GCD[t, j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
a[n_] := b[n, 0];
a /@ Range[0, 25] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 16 2018
STATUS
approved