login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions of {1,...,n} with relatively prime block sizes.
1

%I #22 May 10 2021 07:40:51

%S 1,1,1,4,11,51,162,876,3761,20782,109293,678569,4038388,27644436,

%T 186524145,1379760895,10323844183,82864869803,674798169662,

%U 5832742205056,51385856585637,474708148273586,4486977535287371,44152005855084345,444577220573083896

%N Number of set partitions of {1,...,n} with relatively prime block sizes.

%H Alois P. Heinz, <a href="/A318120/b318120.txt">Table of n, a(n) for n = 0..576</a>

%F a(n) = Sum_{|y| = n, GCD(y) = 1} n! / (Product_i y_i! * Product_i (y)_i!) where the sum is over all relatively prime integer partitions of n and (y)_i is the multiplicity of i in y.

%e The a(4) = 11 set partitions:

%e {{1},{2},{3},{4}}

%e {{1},{2},{3,4}}

%e {{1},{2,3},{4}}

%e {{1},{2,4},{3}}

%e {{1,2},{3},{4}}

%e {{1,3},{2},{4}}

%e {{1,4},{2},{3}}

%e {{1},{2,3,4}}

%e {{1,2,3},{4}}

%e {{1,2,4},{3}}

%e {{1,3,4},{2}}

%p b:= proc(n, t) option remember; `if`(n=0, `if`(t<2, 1, 0),

%p add(b(n-j, igcd(t, j))*binomial(n-1, j-1), j=1..n))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 30 2019

%t numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn];

%t Table[Total[numSetPtnsOfType/@Select[IntegerPartitions[n],GCD@@#==1&]],{n,10}]

%t (* Second program: *)

%t b[n_, t_] := b[n, t] = If[n == 0, If[t < 2, 1, 0],

%t Sum[b[n - j, GCD[t, j]]*Binomial[n - 1, j - 1], {j, 1, n}]];

%t a[n_] := b[n, 0];

%t a /@ Range[0, 25] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *)

%Y a(n) >= A271426(n).

%Y Cf. A000110, A000258, A000311, A000670, A000740, A000837, A005651, A005804, A008277, A124794, A319182, A320289.

%K nonn

%O 0,4

%A _Gus Wiseman_, Dec 16 2018