

A317510


Numbers (4p+1)/3 where p is a Sophie Germain prime p > 3.


2



7, 15, 31, 39, 55, 71, 111, 119, 151, 175, 231, 239, 255, 311, 319, 335, 375, 391, 479, 559, 575, 591, 655, 679, 791, 855, 871, 879, 911, 959, 991, 1015, 1079, 1215, 1271, 1351, 1359, 1375, 1399, 1471, 1631, 1639, 1719, 1879, 1919, 1935, 1975, 1999, 2015, 2079, 2111, 2135, 2311, 2415, 2519, 2535, 2575, 2631
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

It appears that this is a subsequence of A179882.
Define a set of consecutive positive odd numbers {1,......, (A077065(n)1)} with n >= 3 and skip the number A077065(n)/2. Then the contraharmonic mean of that set gives the sequence. For example: ContraharmonicMean[{1, 3, 7, 9}] = 7, ContraharmonicMean[{1, 3, 5, 7, 9, 13, 15, 17, 19, 21}] = 15, ContraharmonicMean[{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 31, 33, 35, 37,39, 41, 43, 45}] = 31.  Hilko Koning, Aug 28 2018


LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..5000


MATHEMATICA

lst = {}; Do[If[PrimeQ[p] && PrimeQ[2 p + 1], AppendTo[lst, (4 p + 1)/3]], {p, 5, 2*10^3}]; lst
4 (Select[Prime@Range[3, 300], PrimeQ[2 # + 1] &] + 1)/3  1 (* Robert G. Wilson v, Jul 30 2018 *)


PROG

(PARI) lista(nn) = {forprime (p=5, nn, if (isprime(2*p+1), print1((4*p+1)/3, ", ")); ); } \\ Michel Marcus, Aug 27 2018
(GAP) a:=[];; for p in [3..2000] do if IsPrime(p) and IsPrime(2*p+1) then Add(a, (4*p+1)/3); fi; od; a; # Muniru A Asiru, Aug 28 2018


CROSSREFS

Cf. A005384, A179882.
Subsequence of A004767, and of A004771.
Sequence in context: A293361 A117747 A179882 * A137196 A120094 A078485
Adjacent sequences: A317507 A317508 A317509 * A317511 A317512 A317513


KEYWORD

nonn


AUTHOR

Hilko Koning, Jul 30 2018


STATUS

approved



