OFFSET
0,3
COMMENTS
Euler transform of A002418.
LINKS
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A002418(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 4*x^k)/(k*(1 - x^k)^5)).
a(n) ~ (5/7)^(703/8640)/(2 * 3^(2143/2880) * n^(5023/8640) * Pi^(17/1440)) * exp(-1/144 + (1/12-Zeta'(-1))/12 - (21 * Zeta(3))/(400 * Pi^2) + (62921 * Zeta(5))/(80000 * Pi^4) - (194481 * Zeta(3) * Zeta(5)^2)/(50 * Pi^12) - (200120949 * Zeta(5)^3)/(1250 * Pi^14) + (28594081676916 * Zeta(5)^5)/(3125 * Pi^24) + (7 * Zeta'(-3))/12 + ((-343 * (7/5)^(1/6) * Pi)/(96000 * sqrt(3)) + (147 * (7/5)^(1/6) * sqrt(3) * Zeta(3) * Zeta(5))/(10 * Pi^7) + (1058841 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^2)/(2000 * Pi^9) - (18211006359 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^4)/(500 * Pi^19)) * n^(1/6) + (-((7/5)^(1/3) * Zeta(3))/(4 * Pi^2) - (1029 * (7/5)^(1/3) * Zeta(5))/(200 * Pi^4) + (10890936 * (7/5)^(1/3) * Zeta(5)^3)/(25 * Pi^14)) * n^(1/3) + ((7 * sqrt(7/15) * Pi)/120 - (9261 * sqrt(21/5) * Zeta(5)^2)/(5 * Pi^9)) * sqrt(n) + ((63 * (7/5)^(2/3) * Zeta(5))/(2 * Pi^4)) * n^(2/3) + ((2 * sqrt(3) * Pi)/(5^(5/6) * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018
MAPLE
a:=series(mul(1/(1-x^k)^((5*k-1)*binomial(k+2, 3)/4), k=1..100), x=0, 28): seq(coeff(a, x, n), n=0..27); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^((5 k - 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 4 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (5 d - 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 19 2018
STATUS
approved