login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A317021
Expansion of Product_{k>=1} 1/(1 - x^k)^((3*k-1)*binomial(k+2,3)/2).
3
1, 1, 11, 51, 216, 861, 3477, 13367, 50377, 184667, 664484, 2345230, 8142476, 27825576, 93750686, 311682789, 1023547782, 3322634928, 10669887669, 33916213669, 106776876109, 333111724130, 1030264525744, 3160359629535, 9618807643826, 29057370625281, 87153154537437
OFFSET
0,3
COMMENTS
Euler transform of A002419.
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A002419(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 5*x^k)/(k*(1 - x^k)^5)).
a(n) ~ 1/(2^(1987/2160) * 3^(713/1080) * 7^(173/2160) * n^(1253/2160) * Pi^(7/360)) * exp(-1/72 + (1/12-Zeta'(-1))/6 - Zeta(3)/(30 * Pi^2) + (111 * Zeta(5))/(200 * Pi^4) - (7056 * Zeta(3) * Zeta(5)^2)/Pi^12 - (592704 * Zeta(5)^3)/(5 * Pi^14) + (43016085504 * Zeta(5)^5)/(5 * Pi^24) + (2 * Zeta'(-3))/3 + ((-7 * (7/2)^(1/6) * Pi)/(3200 * 3^(2/3)) + (14 * 2^(5/6) * 3^(1/3) * 7^(1/6) * Zeta(3) * Zeta(5))/Pi^7 + (1029 * 2^(5/6) * 3^(1/3) * 7^(1/6) * Zeta(5)^2)/(5 * Pi^9) - (17978688 * 2^(5/6) * 3^(1/3) * 7^(1/6) * Zeta(5)^4)/Pi^19) * n^(1/6) + (-((7/6)^(1/3) * Zeta(3))/(2 * Pi^2) - (7 * 3^(2/3) * (7/2)^(1/3) * Zeta(5))/(5 * Pi^4) + (75264 * 6^(2/3) * 7^(1/3) * Zeta(5)^3)/Pi^14) * n^(1/3) + ((sqrt(7/2) * Pi)/60 - (1008 * sqrt(14) * Zeta(5)^2)/Pi^9) * sqrt(n) + ((6 * 6^(1/3) * 7^(2/3) * Zeta(5))/Pi^4) * n^(2/3) + ((2 * (2/7)^(1/6) * 3^(2/3) * Pi)/5) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(add(
(3*d-1)*binomial(d+2, 3)/2*d, d=numtheory
[divisors](j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jul 19 2018
MATHEMATICA
nmax = 26; CoefficientList[Series[Product[1/(1 - x^k)^((3 k - 1) Binomial[k + 2, 3]/2), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 26; CoefficientList[Series[Exp[Sum[x^k (1 + 5 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (3 d - 1)/12, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 26}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 19 2018
STATUS
approved