login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A027942 a(n) = T(2n+1, n+2), T given by A027935. 1
1, 11, 51, 176, 530, 1490, 4043, 10773, 28445, 74770, 196116, 513876, 1345861, 3524111, 9226935, 24157220, 63245318, 165579398, 433493615, 1134902265, 2971214081, 7778740966, 20365009896, 53316289896, 139583861065, 365435294675, 956722024443, 2504730780248 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (6,-13,13,-6,1).

FORMULA

a(n) = Fibonacci(2*n+5) - 2*n^2 - 5*n - 5.

G.f.: x*(1+5*x-2*x^2)/((1-x)^3*(1-3*x+x^2)). - Colin Barker, Sep 20 2012

MAPLE

with(combinat): seq(fibonacci(2*n+5) -(2*n^2+5*n+5), n=1..40); # G. C. Greubel, Sep 28 2019

MATHEMATICA

CoefficientList[Series[(1+5x-2x^2)/((1-x)^3*(1-3x+x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 18 2013 *)

LinearRecurrence[{6, -13, 13, -6, 1}, {1, 11, 51, 176, 530}, 40] (* Harvey P. Dale, Aug 18 2017 *)

PROG

(MAGMA) [Fibonacci(2*n+5)-2*n^2-5*n-5: n in [1..30]]; // Vincenzo Librandi, Apr 18 2011

(PARI) vector(40, n, fibonacci(2*n+5) -(2*n^2+5*n+5) ) \\ G. C. Greubel, Sep 28 2019

(Sage) [fibonacci(2*n+5) -(2*n^2+5*n+5) for n in (1..40)] # G. C. Greubel, Sep 28 2019

(GAP) List([1..40], n-> Fibonacci(2*n+5) -(2*n^2+5*n+5) ); # G. C. Greubel, Sep 28 2019

CROSSREFS

Cf. A000045, A027935.

Sequence in context: A185505 A051843 A107464 * A168214 A321421 A317021

Adjacent sequences:  A027939 A027940 A027941 * A027943 A027944 A027945

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling

EXTENSIONS

More terms from Vincenzo Librandi, Oct 18 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 00:56 EDT 2021. Contains 343197 sequences. (Running on oeis4.)