login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308971
Largest prime factor of A001008(n), numerator of n-th harmonic number; a(1) = 1.
5
1, 3, 11, 5, 137, 7, 11, 761, 7129, 61, 863, 509, 919, 1117, 41233, 8431, 1138979, 39541, 7440427, 11167027, 18858053, 227, 583859, 467183, 312408463, 34395742267, 215087, 375035183, 4990290163, 17783, 2667653736673, 535919, 199539368321, 15088528003, 137121586897
OFFSET
1,2
COMMENTS
Initial terms coincide with A120299 = greatest prime factor of Stirling numbers of first kind A000254. They differ when the unreduced denominator of H(n), equal to n!, is divisible by this factor, i.e., A120299(n) <= n. Can this ever happen?
LINKS
FORMULA
a(n) = A006530(A001008(n)). - Amiram Eldar, Feb 24 2020
EXAMPLE
n | A001008(n) written as product of primes
-----+------------------------------------------
1 | 1 (empty product)
2 | 3
3 | 11
4 | 5 * 5
5 | 137
6 | 7 * 7
7 | 3 * 11 * 11
8 | 761
9 | 7129
10 | 11 * 11 * 61
11 | 97 * 863
12 | 13 * 13 * 509
13 | 29 * 43 * 919
14 | 1049 * 1117
15 | 29 * 41233
16 | 17 * 17 * 8431
17 | 37 * 1138979
18 | 19 * 19 * 39541
19 | 37 * 7440427
20 | 5 * 11167027
etc., therefore this sequence = 1, 3, 11, 5, 137, 7, 11, 761, 7129, 61, ...
MATHEMATICA
Array[FactorInteger[Numerator@HarmonicNumber[#]][[-1, 1]] &, 35] (* Michael De Vlieger, Jul 04 2019 *)
PROG
(PARI) a(n)={if(n>1, factor(A001008(n))[1, 1], 1)}
CROSSREFS
Cf. A308967 (number of prime factors), A308968 (table of factorization), A308969 (table of prime divisors), A308970 (smallest prime factor) of A001008(n).
Sequence in context: A242223 A308969 A308970 * A120299 A341217 A094900
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jul 03 2019
STATUS
approved