login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308974
Sum of all the parts in the partitions of n into 7 primes.
7
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 14, 15, 16, 34, 36, 57, 80, 84, 88, 138, 144, 200, 208, 243, 280, 406, 360, 496, 512, 627, 646, 910, 792, 1110, 988, 1326, 1240, 1763, 1386, 2064, 1848, 2520, 2162, 3102, 2448, 3773, 3000, 4284, 3536, 5247, 3942
OFFSET
0,15
FORMULA
a(n) = n * Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} c(i) * c(j) * c(k) * c(l) * c(m) * c(o) * c(n-i-j-k-l-m-o), c = A010051.
a(n) = n * A259197(n).
a(n) = A308975(n) + A308976(n) + A308977(n) + A308978(n) + A308979(n) + A307637(n) + A308980(n).
MATHEMATICA
Table[Total[Flatten[Select[IntegerPartitions[n, {7}], AllTrue[#, PrimeQ]&]]], {n, 0, 60}] (* Harvey P. Dale, Nov 28 2023 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jul 04 2019
STATUS
approved