login
A308969
Table, read by rows: row n contains the prime divisors of A001008 (numerator of n-th harmonic number), without repetitions.
4
1, 3, 11, 5, 137, 7, 3, 11, 761, 7129, 11, 61, 97, 863, 13, 509, 29, 43, 919, 1049, 1117, 29, 41233, 17, 8431, 37, 1138979, 19, 39541, 37, 7440427, 5, 11167027, 18858053, 3, 23, 53, 227, 761, 583859, 5, 577, 467183, 109, 312408463
OFFSET
1,2
COMMENTS
Row 1 is taken to be {1} instead of being empty, by convention.
EXAMPLE
n | A001008(n) written as product of primes
-----+---------------------------------------------
1 | 1 (empty product)
2 | 3
3 | 11
4 | 5 * 5 (So 5 is the only prime divisor, and row(4) = {5}.)
5 | 137
6 | 7 * 7
7 | 3 * 11 * 11 whence row(7) = {3, 11}.)
8 | 761
9 | 7129
10 | 11 * 11 * 61 whence row(10) = {11, 61}.
11 | 97 * 863
12 | 13 * 13 * 509 whence row(16) = {13, 509}.
13 | 29 * 43 * 919 whence row(13) = {29, 43, 919}.
14 | 1049 * 1117
15 | 29 * 41233
16 | 17 * 17 * 8431 whence row(16) = {17, 8431}.
17 | 37 * 1138979
18 | 19 * 19 * 39541 whence row(18) = {19, 39541}.
19 | 37 * 7440427
20 | 5 * 11167027
etc.
MATHEMATICA
Table[FactorInteger[Numerator[HarmonicNumber[n]]][[All, 1]], {n, 30}]// Flatten (* Harvey P. Dale, Sep 14 2020 *)
PROG
(PARI) row(n)={if(n>1, factor(A001008(n))[, 1]~, [1])}
CROSSREFS
Cf. A001008.
Cf. A308967 (number of prime factors), A308968 (table of factorization), A308970 & A308971 (smallest & greatest prime factor) of A001008(n).
Sequence in context: A114234 A352005 A242223 * A308970 A308971 A120299
KEYWORD
nonn,tabf
AUTHOR
M. F. Hasler, Jul 03 2019
STATUS
approved