%I #18 Feb 24 2020 08:07:51
%S 1,3,11,5,137,7,11,761,7129,61,863,509,919,1117,41233,8431,1138979,
%T 39541,7440427,11167027,18858053,227,583859,467183,312408463,
%U 34395742267,215087,375035183,4990290163,17783,2667653736673,535919,199539368321,15088528003,137121586897
%N Largest prime factor of A001008(n), numerator of n-th harmonic number; a(1) = 1.
%C Initial terms coincide with A120299 = greatest prime factor of Stirling numbers of first kind A000254. They differ when the unreduced denominator of H(n), equal to n!, is divisible by this factor, i.e., A120299(n) <= n. Can this ever happen?
%H Amiram Eldar, <a href="/A308971/b308971.txt">Table of n, a(n) for n = 1..325</a>
%F a(n) = A006530(A001008(n)). - _Amiram Eldar_, Feb 24 2020
%e n | A001008(n) written as product of primes
%e -----+------------------------------------------
%e 1 | 1 (empty product)
%e 2 | 3
%e 3 | 11
%e 4 | 5 * 5
%e 5 | 137
%e 6 | 7 * 7
%e 7 | 3 * 11 * 11
%e 8 | 761
%e 9 | 7129
%e 10 | 11 * 11 * 61
%e 11 | 97 * 863
%e 12 | 13 * 13 * 509
%e 13 | 29 * 43 * 919
%e 14 | 1049 * 1117
%e 15 | 29 * 41233
%e 16 | 17 * 17 * 8431
%e 17 | 37 * 1138979
%e 18 | 19 * 19 * 39541
%e 19 | 37 * 7440427
%e 20 | 5 * 11167027
%e etc., therefore this sequence = 1, 3, 11, 5, 137, 7, 11, 761, 7129, 61, ...
%t Array[FactorInteger[Numerator@HarmonicNumber[#]][[-1, 1]] &, 35] (* _Michael De Vlieger_, Jul 04 2019 *)
%o (PARI) a(n)={if(n>1, factor(A001008(n))[1,1], 1)}
%Y Cf. A001008, A006530.
%Y Cf. A308967 (number of prime factors), A308968 (table of factorization), A308969 (table of prime divisors), A308970 (smallest prime factor) of A001008(n).
%K nonn
%O 1,2
%A _M. F. Hasler_, Jul 03 2019