login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307526
Expansion of 1/theta_4(1/theta_4(x) - 1), where theta_4() is the Jacobi theta function.
0
1, 4, 24, 144, 828, 4624, 25296, 136192, 723160, 3792564, 19672240, 101054512, 514643952, 2600665872, 13049557280, 65057605120, 322413671228, 1589046496704, 7791836790504, 38025622117168, 184749163375664, 893881787650016, 4308024769339344, 20685919693884672
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Jacobi Theta Functions
FORMULA
G.f.: g(g(x) - 1), where g(x) = g.f. of A015128.
MATHEMATICA
nmax = 23; CoefficientList[Series[1/EllipticTheta[4, 0, 1/EllipticTheta[4, 0, x] - 1], {x, 0, nmax}], x]
g[x_] := g[x] = Product[(1 + x^k)/(1 - x^k), {k, 1, 23}]; a[n_] := a[n] = SeriesCoefficient[g[g[x] - 1], {x, 0, n}]; Table[a[n], {n, 0, 23}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2019
STATUS
approved