login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307524
Expansion of e.g.f. Product_{k>=1} (1 + log(1/(1 - x))^k)/(1 - log(1/(1 - x))^k).
1
1, 2, 10, 76, 724, 8368, 113792, 1771824, 31001424, 601677888, 12818974848, 297223165248, 7446226027584, 200354793323904, 5760239869401984, 176170480317568512, 5709535272618925824, 195419487662892221184, 7042458625343222876928, 266500916470984705887744
OFFSET
0,2
COMMENTS
Exponential convolution of A320349 and A320350.
FORMULA
E.g.f.: exp(Sum_{k>=1} (sigma(2*k) - sigma(k))*log(1/(1 - x))^k/k).
E.g.f.: 1/theta_4(log(1/(1 - x))).
a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A015128(k)*k!.
a(n) ~ sqrt(Pi) * exp(Pi*sqrt(n/(exp(1)-1)) + Pi^2/(8*(exp(1)-1))) * n^(n - 1/2) / (2^(5/2) * (exp(1)-1)^n). - Vaclav Kotesovec, Apr 13 2019
MATHEMATICA
nmax = 19; CoefficientList[Series[Product[(1 + Log[1/(1 - x)]^k)/(1 - Log[1/(1 - x)]^k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[Exp[Sum[(DivisorSigma[1, 2 k] - DivisorSigma[1, k]) Log[1/(1 - x)]^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 19; CoefficientList[Series[1/EllipticTheta[4, 0, Log[1/(1 - x)]], {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[Abs[StirlingS1[n, k]] Sum[PartitionsQ[j] PartitionsP[k - j], {j, 0, k}] k!, {k, 0, n}], {n, 0, 19}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Apr 12 2019
STATUS
approved