This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307525 Expansion of e.g.f. Product_{k>=1} 1/(1 - log(1/(1 - x))^k/k!). 0
 1, 1, 4, 21, 146, 1240, 12479, 144970, 1908682, 28079550, 456458832, 8125189974, 157190542607, 3284222304545, 73705849847317, 1768479436456975, 45180024672023814, 1224529894981726614, 35096983241255523572, 1060703070504583747430, 33714045363258013414692 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA E.g.f.: exp(Sum_{k>=1} Sum_{j>=1} log(1/(1 - x))^(j*k)/(k*(j!)^k)). a(n) = Sum_{k=0..n} |Stirling1(n,k)|*A005651(k). a(n) ~ c * sqrt(2*Pi) * n^(n + 1/2) / (exp(1) - 1)^(n+1), where c = A247551 = Product_{k>=2} 1/(1-1/k!). - Vaclav Kotesovec, Apr 13 2019 MATHEMATICA nmax = 20; CoefficientList[Series[Product[1/(1 - Log[1/(1 - x)]^k/k!), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! nmax = 20; CoefficientList[Series[Exp[Sum[Sum[Log[1/(1 - x)]^(j k)/(k (j!)^k), {j, 1, nmax}], {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]! Table[Sum[Abs[StirlingS1[n, k]] Total[Apply[Multinomial, IntegerPartitions[k], {1}]], {k, 0, n}], {n, 0, 20}] CROSSREFS Cf. A005651, A140585, A306039, A320349. Sequence in context: A305986 A233481 A308337 * A327872 A163861 A247054 Adjacent sequences:  A307522 A307523 A307524 * A307526 A307527 A307528 KEYWORD nonn AUTHOR Ilya Gutkovskiy, Apr 12 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 00:32 EST 2019. Contains 329871 sequences. (Running on oeis4.)