login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/theta_4(1/theta_4(x) - 1), where theta_4() is the Jacobi theta function.
0

%I #6 Apr 13 2019 08:09:34

%S 1,4,24,144,828,4624,25296,136192,723160,3792564,19672240,101054512,

%T 514643952,2600665872,13049557280,65057605120,322413671228,

%U 1589046496704,7791836790504,38025622117168,184749163375664,893881787650016,4308024769339344,20685919693884672

%N Expansion of 1/theta_4(1/theta_4(x) - 1), where theta_4() is the Jacobi theta function.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>

%F G.f.: g(g(x) - 1), where g(x) = g.f. of A015128.

%t nmax = 23; CoefficientList[Series[1/EllipticTheta[4, 0, 1/EllipticTheta[4, 0, x] - 1], {x, 0, nmax}], x]

%t g[x_] := g[x] = Product[(1 + x^k)/(1 - x^k), {k, 1, 23}]; a[n_] := a[n] = SeriesCoefficient[g[g[x] - 1], {x, 0, n}]; Table[a[n], {n, 0, 23}]

%Y Cf. A002448, A015128, A307050, A307127, A307128, A307186.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Apr 12 2019