login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307380
Number of quintic primitive Dirichlet characters modulo n.
6
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0
OFFSET
1,11
COMMENTS
a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a fifth-power root of unity.
Mobius transform of A319099. Every term is 0 or a power of 4.
LINKS
FORMULA
Multiplicative with a(p^e) = 4 if p^e = 25 or p == 1 (mod 5) and e = 1, otherwise 0.
EXAMPLE
Let w = exp(2*Pi/5). For n = 11, the 4 quintic primitive Dirichlet characters modulo n are:
Chi_1 = [0, 1, w, w^3, w^2, w^4, w^4, w^2, w^3, w, 1];
Chi_2 = [0, 1, w^2, w, w^4, w^3, w^3, w^4, w, w^2, 1];
Chi_3 = [0, 1, w^3, w^4, w, w^2, w^2, w, w^4, w^3, 1];
Chi_4 = [0, 1, w^4, w^2, w^3, w, w, w^3, w^2, w^4, 1],
so a(11) = 4.
MATHEMATICA
f[5, 2] = 4; f[p_, e_] := If[Mod[p, 5] == 1 && e == 1, 4, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 16 2020 *)
PROG
(PARI) a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1)), 0))
(PARI) A307380(n) = sumdiv(n, d, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1))); \\ (Slightly speeding the program above) - Antti Karttunen, Aug 22 2019
(PARI) A307380(n) = { my(f=factor(n)); prod(i=1, #f~, if(((5==f[i, 1])&&(2==f[i, 2]))||((1==(f[i, 1]%5))&&(1==f[i, 2])), 4, 0)); }; \\ (After the multiplicative formula, much faster) - Antti Karttunen, Aug 22 2019
CROSSREFS
Number of k-th power primitive Dirichlet characters modulo n: A114643 (k=2), A160498 (k=3), A160499 (k=4), this sequence (k=5), A307381 (k=6), A307382 (k=7), A329272 (k=8).
Cf. A319099 (number of solutions to x^5 == 1 (mod n)).
Sequence in context: A061858 A005873 A217511 * A178990 A276570 A360543
KEYWORD
nonn,mult
AUTHOR
Jianing Song, Apr 06 2019
EXTENSIONS
More terms from Antti Karttunen, Aug 22 2019
STATUS
approved