Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Feb 19 2021 03:38:05
%S 1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,4,0,0,0,
%T 0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,
%U 0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0
%N Number of quintic primitive Dirichlet characters modulo n.
%C a(n) is the number of primitive Dirichlet characters modulo n such that all entries are 0 or a fifth-power root of unity.
%C Mobius transform of A319099. Every term is 0 or a power of 4.
%H Antti Karttunen, <a href="/A307380/b307380.txt">Table of n, a(n) for n = 1..65539</a>
%F Multiplicative with a(p^e) = 4 if p^e = 25 or p == 1 (mod 5) and e = 1, otherwise 0.
%e Let w = exp(2*Pi/5). For n = 11, the 4 quintic primitive Dirichlet characters modulo n are:
%e Chi_1 = [0, 1, w, w^3, w^2, w^4, w^4, w^2, w^3, w, 1];
%e Chi_2 = [0, 1, w^2, w, w^4, w^3, w^3, w^4, w, w^2, 1];
%e Chi_3 = [0, 1, w^3, w^4, w, w^2, w^2, w, w^4, w^3, 1];
%e Chi_4 = [0, 1, w^4, w^2, w^3, w, w, w^3, w^2, w^4, 1],
%e so a(11) = 4.
%t f[5, 2] = 4; f[p_, e_] := If[Mod[p, 5] == 1 && e == 1, 4, 0]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Sep 16 2020 *)
%o (PARI) a(n)=sum(d=1, n, if(n%d==0, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1)), 0))
%o (PARI) A307380(n) = sumdiv(n, d, moebius(n/d)*sum(i=1, d, if((i^5-1)%d, 0, 1))); \\ (Slightly speeding the program above) - _Antti Karttunen_, Aug 22 2019
%o (PARI) A307380(n) = { my(f=factor(n)); prod(i=1, #f~, if(((5==f[i,1])&&(2==f[i,2]))||((1==(f[i,1]%5))&&(1==f[i,2])),4,0)); }; \\ (After the multiplicative formula, much faster) - _Antti Karttunen_, Aug 22 2019
%Y Number of k-th power primitive Dirichlet characters modulo n: A114643 (k=2), A160498 (k=3), A160499 (k=4), this sequence (k=5), A307381 (k=6), A307382 (k=7), A329272 (k=8).
%Y Cf. A319099 (number of solutions to x^5 == 1 (mod n)).
%K nonn,mult
%O 1,11
%A _Jianing Song_, Apr 06 2019
%E More terms from _Antti Karttunen_, Aug 22 2019