login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307379
Decimal expansion of Sum_{n >= 1} 2/(k(n)*(k(n) + 1)), with k = A018252 (nonprime numbers).
2
1, 3, 3, 9, 5, 4, 0, 1, 4, 7, 4, 7, 1, 5, 9, 3, 5, 1, 7, 9, 6, 9, 8, 1, 0, 8, 2, 3, 8, 2, 6, 5, 1, 0, 4, 7, 8, 7, 1, 1, 4, 8, 1, 1, 6, 1, 0, 5, 1, 8, 5, 9, 0, 8, 7, 6, 9, 9, 5, 4, 2, 7, 9, 8, 4, 7, 5, 1, 5, 5, 6, 6, 6, 4, 1, 4, 1, 8, 4, 1, 1, 1, 3, 5, 6, 5, 9
OFFSET
1,2
COMMENTS
We know that Sum_{n >= 1} 2/(n^2 + n) = 2 and Sum_{n >= 1} 2/(p(n)*(p(n) + 1)) = 2*A179119, where p = A000040. Therefore, the present decimal expansion 1/1 + 1/10 + 1/21 + 1/36 + ... = 2*(1 - A179119).
FORMULA
Equals 2*(1 - A179119) = 2*(1 - Sum_{n>=1} 1/(A000040(n)*A008864(n))).
EXAMPLE
1.3395401474715935179... = 2 - (1/3 + 1/(3*2) + 1/(5*3) + 1/(7*4) + 1/(11*6) + ...) = 2*(1 - A179119).
MATHEMATICA
digits = 87;
S = 2 - 2 NSum[(-1)^n PrimeZetaP[n], {n, 2, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5];
RealDigits[S, 10, digits][[1]] (* Jean-François Alcover, Jun 20 2019 *) [From A179119]
PROG
(PARI) 2*(1 - sumeulerrat(1/(p*(p+1)))) \\ Amiram Eldar, Mar 18 2021
CROSSREFS
KEYWORD
cons,easy,nonn
AUTHOR
Marco Ripà, Apr 06 2019
EXTENSIONS
Edited by Wolfdieter Lang, Jul 10 2019
STATUS
approved