login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377398
Expansion of e.g.f. (2 - exp(x))^3.
1
1, -3, 3, 9, 3, -63, -357, -1431, -5037, -16623, -52917, -164871, -506877, -1545183, -4684677, -14152311, -42653517, -128353743, -385847637, -1159115751, -3480492957, -10447770303, -31355893797, -94092847191, -282328873197, -847087282863, -2541463175157
OFFSET
0,2
FORMULA
a(n) = 5*a(n-1) - 6*a(n-2) - 24 for n > 2.
a(n) = Sum_{k=0..3} (-1)^k * k! * binomial(3,k) * Stirling2(n,k).
a(n) = Sum_{k=0..3} (-1)^k * 2^(3-k) * binomial(3,k) * k^n.
G.f.: (1-4*x) * (1-5*x+12*x^2)/((1-x) * (1-2*x) * (1-3*x)).
a(n) = 3*2^(n+1) - 3^n - 12 for n > 0. - Stefano Spezia, Oct 27 2024
a(0) = 1; a(n) = Sum_{k=1..n} (1 - 4 * k/n) * binomial(n,k) * a(n-k). - Seiichi Manyama, Oct 27 2024
PROG
(PARI) a(n) = sum(k=0, 3, (-1)^k*k!*binomial(3, k)*stirling(n, k, 2));
(PARI) a(n) = sum(k=0, 3, (-1)^k*2^(3-k)*binomial(3, k)*k^n);
CROSSREFS
Sequence in context: A113213 A088032 A348397 * A066572 A307379 A276147
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Oct 27 2024
STATUS
approved