login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348397
a(n) = Sum_{d|n} sigma_[n-d](d), where sigma_[k](n) is the sum of the k-th powers of the divisors of n.
1
1, 3, 3, 9, 3, 50, 3, 343, 734, 3388, 3, 133959, 3, 827646, 10297073, 33640713, 3, 2579172499, 3, 44822639761, 678610493345, 285312719194, 3, 393067887861756, 95367431640630, 302875123369476, 150094918113956098, 569940024192528003, 3, 105474401758856279784, 3
OFFSET
1,2
LINKS
FORMULA
a(n) = 3 iff n is prime. - Bernard Schott, Oct 17 2021
EXAMPLE
a(6) = 50; a(6) = sigma_[6-1](1) + sigma_[6-2](2) + sigma_[6-3](3) + sigma_[6-6](6) = (1^5) + (1^4 + 2^4) + (1^3 + 3^3) + (6^0 + 6^0 + 6^0 + 6^0) = 50.
MATHEMATICA
a[n_] := DivisorSum[n, DivisorSigma[n - #, #] &]; Array[a, 30] (* Amiram Eldar, Oct 17 2021 *)
PROG
(PARI) a(n) = sumdiv(n, d, sigma(d, n-d)); \\ Michel Marcus, Oct 18 2021
CROSSREFS
Cf. A321141.
Sequence in context: A157031 A113213 A088032 * A377398 A066572 A307379
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 16 2021
STATUS
approved