|
|
A348398
|
|
a(n) = Sum_{d|n} sigma_[n/d](d), where sigma_[k](n) is the sum of the k-th powers of the divisors of n.
|
|
0
|
|
|
1, 4, 5, 13, 7, 32, 9, 54, 42, 78, 13, 299, 15, 204, 395, 647, 19, 1626, 21, 2881, 2565, 2208, 25, 17070, 3158, 8406, 20482, 35607, 31, 116964, 33, 136104, 178529, 131418, 94983, 1112928, 39, 524712, 1596579, 2533908, 43, 7283718, 45, 8405995, 16364934, 8389212, 49, 78586033, 823602, 43423962
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Table of n, a(n) for n=1..50.
|
|
EXAMPLE
|
a(8) = 54; a(8) = sigma_[8/1](1) + sigma_[8/2](2) + sigma_[8/4](4) + sigma_[8/8](8) = (1^8) + (1^4 + 2^4) + (1^2 + 2^2 + 4^2) + (1^1 + 2^1 + 4^1 + 8^1) = 54.
|
|
MATHEMATICA
|
a[n_] := DivisorSum[n, DivisorSigma[n/#, #] &]; Array[a, 50] (* Amiram Eldar, Oct 17 2021 *)
|
|
PROG
|
(PARI) a(n) = sumdiv(n, d, sigma(d, n/d)); \\ Michel Marcus, Oct 18 2021
|
|
CROSSREFS
|
Cf. A321141.
Sequence in context: A028272 A003969 A326828 * A132140 A102703 A283483
Adjacent sequences: A348395 A348396 A348397 * A348399 A348400 A348401
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Wesley Ivan Hurt, Oct 16 2021
|
|
STATUS
|
approved
|
|
|
|