login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305198
Number of set partitions of [2n+1] with symmetric block size list of length A109613(n).
3
1, 1, 7, 56, 470, 10299, 91925, 3939653, 36298007, 2571177913, 24158837489, 2557117944391, 24350208829581, 3601150175699409, 34626777577615921, 6820331445080882282, 66066554102006208712, 16719951521837764142510, 162903256982698962545956
OFFSET
0,3
LINKS
FORMULA
a(n) = A275281(2n+1,A109613(n)).
MAPLE
b:= proc(n, s) option remember; expand(`if`(n>s,
binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)*
b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2)
end:
a:= n-> coeff(b(2*n+1, 0), x, n+irem(n+1, 2)):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1] x, 1] + Sum[Binomial[n - 1, j - 1] b[n - j, s + j] Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}] x^2];
a[n_] := Coefficient[b[2n + 1, 0], x, n + Mod[n + 1, 2]];
a /@ Range[0, 20] (* Jean-François Alcover, Dec 08 2020, after Alois P. Heinz *)
CROSSREFS
Bisection (odd part) of A305197.
Sequence in context: A155197 A147839 A126694 * A264912 A323216 A024091
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 27 2018
STATUS
approved