login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions of [2n+1] with symmetric block size list of length A109613(n).
3

%I #9 Dec 08 2020 08:04:11

%S 1,1,7,56,470,10299,91925,3939653,36298007,2571177913,24158837489,

%T 2557117944391,24350208829581,3601150175699409,34626777577615921,

%U 6820331445080882282,66066554102006208712,16719951521837764142510,162903256982698962545956

%N Number of set partitions of [2n+1] with symmetric block size list of length A109613(n).

%H Alois P. Heinz, <a href="/A305198/b305198.txt">Table of n, a(n) for n = 0..200</a>

%F a(n) = A275281(2n+1,A109613(n)).

%p b:= proc(n, s) option remember; expand(`if`(n>s,

%p binomial(n-1, n-s-1)*x, 1)+add(binomial(n-1, j-1)*

%p b(n-j, s+j)*binomial(s+j-1, j-1), j=1..(n-s)/2)*x^2)

%p end:

%p a:= n-> coeff(b(2*n+1, 0), x, n+irem(n+1, 2)):

%p seq(a(n), n=0..20);

%t b[n_, s_] := b[n, s] = Expand[If[n > s, Binomial[n - 1, n - s - 1] x, 1] + Sum[Binomial[n - 1, j - 1] b[n - j, s + j] Binomial[s + j - 1, j - 1], {j, 1, (n - s)/2}] x^2];

%t a[n_] := Coefficient[b[2n + 1, 0], x, n + Mod[n + 1, 2]];

%t a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 08 2020, after _Alois P. Heinz_ *)

%Y Bisection (odd part) of A305197.

%Y Cf. A109613, A275281, A275283.

%K nonn

%O 0,3

%A _Alois P. Heinz_, May 27 2018