login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305196
a(n) is the smallest number k such that tau(k + n) = tau(k) + n where tau(n) is the number of divisors of n (A000005).
2
1, 1, 10, 9, 26, 25, 74, 29, 82, 441, 170, 133, 348, 131, 166, 3025, 344, 559, 1602, 557, 820, 9979, 986, 4333, 1236, 9191, 694, 3249, 1652, 3481, 9378, 34969, 3118, 249967, 5636, 36829, 3324, 51947, 3994, 6561, 5000, 15835, 16806, 3557, 6436, 119025, 6254, 589777, 7512, 1768851
OFFSET
0,3
LINKS
Michel Marcus and Giovanni Resta, Table of n, a(n) for n = 0..244 (terms up to a(106) from Michel Marcus)
EXAMPLE
10 and 12 have respectively 4 and 6 divisors, that is, 12-10 = 6-4, so a(2)=10.
9 and 12 have respectively 3 and 6 divisors, that is, 12-9 = 6-3, so a(3)=9.
MAPLE
f:= proc(n) local k;
for k from 1 do
if numtheory:-tau(k+n)=numtheory:-tau(k)+n then return k fi
od
end proc:
map(f, [$0..50]); # Robert Israel, May 28 2018
MATHEMATICA
Array[Block[{k = 1}, While[DivisorSigma[0, k + #] != DivisorSigma[0, k] + #, k++]; k] &, 40, 0] (* Michael De Vlieger, May 27 2018 *)
PROG
(PARI) a(n) = {my(k=1); while(numdiv(k+n) != numdiv(k) + n, k++); k; }
CROSSREFS
Cf. A000005, A099642, A015886 (similar, with sigma).
Sequence in context: A184959 A309661 A003568 * A099642 A271973 A237114
KEYWORD
nonn
AUTHOR
Michel Marcus, May 27 2018
STATUS
approved