OFFSET
1,5
COMMENTS
Given a finite set S of positive integers greater than 1, let G(S) be the simple labeled graph with vertex set S and edges between any two vertices that have a common divisor greater than 1. For example, G({6,14,15,35}) is a 4-cycle. A set S is said to be connected if G(S) is a connected graph. The clutter density of S is defined to be Sum_{s in S} (omega(s) - 1) - omega(lcm(S)), where omega = A001221 and lcm is least common multiple. Then a z-forest is a strict integer partition with pairwise indivisible parts greater than 1 such that all connected components have clutter density -1.
LINKS
R. Bacher, On the enumeration of labelled hypertrees and of labelled bipartite trees, arXiv:1102.2708 [math.CO].
EXAMPLE
The a(17) = 11 z-forests together with the corresponding multiset systems:
(17): {{7}}
(15,2): {{2,3},{1}}
(14,3): {{1,4},{2}}
(13,4): {{6},{1,1}}
(12,5): {{1,1,2},{3}}
(11,6): {{5},{1,2}}
(10,7): {{1,3},{4}}
(9,8): {{2,2},{1,1,1}}
(10,4,3): {{1,3},{1,1},{2}}
(7,6,4): {{4},{1,2},{1,1}}
(7,5,3,2): {{4},{3},{2},{1}}
MATHEMATICA
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[Less@@#, GCD@@s[[#]]]>1&]}, If[c=={}, s, zsm[Union[Append[Delete[s, List/@c[[1]]], LCM@@s[[c[[1]]]]]]]]];
zensity[s_]:=Total[(PrimeNu[#]-1&)/@s]-PrimeNu[LCM@@s];
zreeQ[s_]:=And[Length[s]>=2, zensity[s]==-1];
Table[Length[Select[IntegerPartitions[n], Function[s, UnsameQ@@s&&And@@(Length[#]==1||zreeQ[#]&)/@Table[Select[s, Divisible[m, #]&], {m, zsm[s]}]&&Select[Tuples[s, 2], UnsameQ@@#&&Divisible@@#&]=={}]]], {n, 50}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 27 2018
STATUS
approved