OFFSET
1,3
COMMENTS
After 5 million terms the most common numbers for the number of distinct prime factors of the terms are 3, 2, 4, 1, and 5, although it is likely these change as n increases.
See A362062 for the indices where a term with k distinct prime factors first appears.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10000
Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^20, with a color function representing omega(a(n-1)), where black = 0, red = 1, yellow = 2, ..., magenta = 6.
Scott R. Shannon, Image of the first 250000 terms.
EXAMPLE
MATHEMATICA
nn = 120; c[_] = 0; j = a[1] = c[0] = 1; m = 0; Do[Set[k, c[m]]; (Set[{a[n], j, m}, {k, k, #}]; c[#]++) &[PrimeNu[k]], {n, 2, nn}]; Array[a, nn] (* Michael De Vlieger, Apr 06 2023 *)
PROG
(Python)
from itertools import islice
from sympy import primefactors
from collections import Counter
def A362061gen(): # generator of terms
an, c, d = 1, Counter(), dict()
while True:
yield an
dpf = d[an] if an in d else len(primefactors(an))
c[dpf] += 1
an = c[dpf]
print(list(islice(A362061gen(), 81))) # Michael S. Branicky, Apr 06 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Scott R. Shannon, Apr 06 2023
STATUS
approved