login
A362060
Numbers k such that the digits of k are a subsequence of the digits of prime(k).
2
7, 1491, 1723, 4437, 5789, 5893, 6151, 6331, 6347, 6455, 6456, 6457, 6459, 6460, 6466, 6469, 6491, 6501, 6513, 6523, 6581, 6663, 6931, 7817, 9551, 12083, 15103, 23071, 24833, 107647, 115259, 303027, 440999, 968819, 5517973, 27737957, 93230839, 95929941, 96567161
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 7 is a term because the digits of 7 form a subsequence of those of prime(7) = 17.
PROG
(Python)
from sympy import sieve
def ok(n):
p = sieve[n]
while n and p:
if n%10 == p%10:
n //= 10
p //= 10
return n == 0
print([k for k in range(1, 10**6) if ok(k)]) # Michael S. Branicky, Apr 06 2023
(Python)
from sympy import prime, nextprime
from itertools import count, islice
def A362060_gen(startvalue=1): # generator of terms >= startvalue
p = prime(max(startvalue, 1))
for k in count(max(startvalue, 1)):
c = iter(str(p))
if all(map(lambda b:any(map(lambda a:a==b, c)), str(k))):
yield k
p = nextprime(p)
A362060_list = list(islice(A362060_gen(), 20)) # Chai Wah Wu, Apr 07 2023
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jean-Marc Rebert, Apr 06 2023
EXTENSIONS
a(36)-a(39) from Michael S. Branicky, Apr 06 2023
STATUS
approved